Thermoreversible gels of hollow silica nanorod dispersions

被引:2
|
作者
Lee, Haesoo [1 ]
Suman, Khushboo [1 ]
Moglia, David [1 ]
Murphy, Ryan P. [1 ,2 ]
Wagner, Norman J. [1 ]
机构
[1] Univ Delaware, Ctr Neutron Sci, Dept Chem & Biomol Engn, Newark, DE 19716 USA
[2] Natl Inst Stand & Technol, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA
关键词
Anisotropic colloids; Nanorods; Nanoparticle synthesis; Gels; Glasses; Rheology; Small angle neutron scattering; MICROSTRUCTURE; RHEOLOGY; DENSITY; RODS;
D O I
10.1016/j.jcis.2024.01.148
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Colloidal suspensions of anisotropic particles are ubiquitous in particle -based industries. Consequently, there is a need to quantify the effects of particle shape on equilibrium phases and kinetic state transitions, particularly at lower aspect ratios (L/D approximate to 1-10). We present a new, colloidal system comprised of hollow, octadecyl-coated silica rods with 40 nm diameter with controlled aspect ratio and thermoreversible short-range attractions. Rheology and dynamic light scattering measurements on suspensions of these hollow adhesive hard rods with nominal aspect ratio approximate to 3 suspended in tetradecane exhibit thermoreversible gelation without complicating effects of gravitational settling. Small angle neutron scattering measurements of the microstructure are analyzed to determine the effective strength of attraction in the form of Baxter sticky parameter. Quantitative agreement is found with simulation predictions of the thermoreversible gel transition as a function of volume fraction, further validating a universal state diagram and providing guidance for the effects of aspect ratio on gelation.
引用
收藏
页码:219 / 227
页数:9
相关论文
共 50 条
  • [31] Polypeptides: Bioderived templates for thermoreversible semiconducting gels
    Rosu, Cornelia
    Chu, Ping-Hsun
    Reichmanis, Elsa
    Russo, Paul
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [32] Formation of junction zones in thermoreversible methylcellulose gels
    Takahashi, M
    Shimazaki, M
    JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2001, 39 (09) : 943 - 946
  • [33] AMORPHOUS THERMOREVERSIBLE GELS OF ATACTIC POLYSTYRENE.
    Arnauts, J.
    Berghmans, H.
    Polymer communications Guildford, 1987, 28 (03): : 66 - 68
  • [34] RHEOLOGICAL INVESTIGATIONS OF THERMOREVERSIBLE CELLULOSE SULFATE GELS AS COMPARED WITH AGAR GELS
    HOLZAPFEL, G
    LINOW, KJ
    PHILIPP, B
    WULF, K
    WAGENKNECHT, W
    ACTA POLYMERICA, 1986, 37 (09) : 553 - 557
  • [35] Rheological behavior of thermoreversible κ-carrageenan/nanosilica gels
    Daniel-da-Silva, A. L.
    Pinto, F.
    Lopes-da-Silva, J. A.
    Trindade, T.
    Goodfellow, B. J.
    Gil, A. M.
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2008, 320 (02) : 575 - 581
  • [36] Thermoreversible Polymer Gels for Enhanced Oil Recovery
    Altunina, L. K.
    Kuvshinov, V. A.
    Stasieva, L. A.
    CHEMISTRY FOR SUSTAINABLE DEVELOPMENT, 2011, 19 (02): : 121 - 130
  • [37] Thermoreversible Networks: Viscoelastic Properties and Structure of Gels
    Te Nijenhuis, K.
    Advances in Polymer Science, 1997, 130
  • [38] Pharmacokinetics and Pharmacodynamics Evaluation of Tramadol in Thermoreversible Gels
    Boava Papini, Juliana Zampoli
    Saia Cereda, Cintia Maria
    Pedrazzoli Junior, Jose
    Calafatti, Silvana Aparecida
    de Araujo, Daniele Ribeiro
    Tofoli, Giovana Radomille
    BIOMED RESEARCH INTERNATIONAL, 2017, 2017
  • [39] Thermoreversible and irreversible physical gels from biopolymers
    Biopolymers Group, Division of Life Sciences, King's College London, 150 Stamford Street, London SE1 8WA, United Kingdom
    ACS Symposium Series, 2002, 833 : 51 - 69
  • [40] ON THE DEFINITION OF THERMOREVERSIBLE GELS - THE CASE OF SYNDIOTACTIC POLYSTYRENE
    DANIEL, C
    DAMMER, C
    GUENET, JM
    POLYMER, 1994, 35 (19) : 4243 - 4246