Thermoreversible gels of hollow silica nanorod dispersions

被引:2
|
作者
Lee, Haesoo [1 ]
Suman, Khushboo [1 ]
Moglia, David [1 ]
Murphy, Ryan P. [1 ,2 ]
Wagner, Norman J. [1 ]
机构
[1] Univ Delaware, Ctr Neutron Sci, Dept Chem & Biomol Engn, Newark, DE 19716 USA
[2] Natl Inst Stand & Technol, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA
关键词
Anisotropic colloids; Nanorods; Nanoparticle synthesis; Gels; Glasses; Rheology; Small angle neutron scattering; MICROSTRUCTURE; RHEOLOGY; DENSITY; RODS;
D O I
10.1016/j.jcis.2024.01.148
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Colloidal suspensions of anisotropic particles are ubiquitous in particle -based industries. Consequently, there is a need to quantify the effects of particle shape on equilibrium phases and kinetic state transitions, particularly at lower aspect ratios (L/D approximate to 1-10). We present a new, colloidal system comprised of hollow, octadecyl-coated silica rods with 40 nm diameter with controlled aspect ratio and thermoreversible short-range attractions. Rheology and dynamic light scattering measurements on suspensions of these hollow adhesive hard rods with nominal aspect ratio approximate to 3 suspended in tetradecane exhibit thermoreversible gelation without complicating effects of gravitational settling. Small angle neutron scattering measurements of the microstructure are analyzed to determine the effective strength of attraction in the form of Baxter sticky parameter. Quantitative agreement is found with simulation predictions of the thermoreversible gel transition as a function of volume fraction, further validating a universal state diagram and providing guidance for the effects of aspect ratio on gelation.
引用
收藏
页码:219 / 227
页数:9
相关论文
共 50 条
  • [21] Thermoreversible copolymer gels for extracellular matrix
    Vernon, B
    Kim, SW
    Bae, YH
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, 2000, 51 (01): : 69 - 79
  • [22] Time dependent properties of thermoreversible gels
    Borchard, W
    Lechtenfeld, M
    MATERIALS RESEARCH INNOVATIONS, 2001, 4 (5-6) : 381 - 387
  • [23] Nucleation and growth of thermoreversible polymer gels
    Gomez-Solano, J. R.
    Blickle, V.
    Bechinger, C.
    PHYSICAL REVIEW E, 2013, 87 (01):
  • [24] Thermoreversible gels as precursors of polyacrylonitrile fibers
    Khimicheskie Volokna, 2001, (03): : 19 - 24
  • [25] Static inhomogeneities in thermoreversible physical gels
    Ikkai, F
    Shibayama, M
    PHYSICAL REVIEW LETTERS, 1999, 82 (24) : 4946 - 4949
  • [26] Thermoreversible Gels as Precursors of Polyacrylonitrile Fibres
    V. I. Gerasimov
    S. N. Chvalun
    L. A. Kazarin
    A. A. Goponenko
    V. I. Mashchenko
    A. M. Filyakin
    Fibre Chemistry, 2001, 33 : 183 - 188
  • [27] Microstructure and rheology of thermoreversible nanoparticle gels
    Ramakrishnan, S.
    Zukoski, C. F.
    LANGMUIR, 2006, 22 (18) : 7833 - 7842
  • [28] Thermoreversible gels in oil/EVA systems
    Barral, MS
    Lizaso, I
    Muñoz, ME
    Santamaría, A
    RHEOLOGICA ACTA, 2001, 40 (02) : 193 - 195
  • [29] Thermoreversible gels as precursors of polyacrylonitrile fibres
    Gerasimov, VI
    Chvalun, SN
    Kazarin, LA
    Goponenko, AA
    Mashchenko, VI
    Filyakin, AM
    FIBRE CHEMISTRY, 2001, 33 (03) : 183 - 188
  • [30] Hydrogel nanoparticle dispersions with inverse thermoreversible gelation
    Hu, ZB
    Xia, XH
    ADVANCED MATERIALS, 2004, 16 (04) : 305 - +