Weak semiconvexity estimates for Schrödinger potentials and logarithmic Sobolev inequality for Schrödinger bridges

被引:1
|
作者
Conforti, Giovanni [1 ]
机构
[1] Ecole Polytech, Inst Polytech Paris, CNRS, CMAP, F-91120 Palaiseau, France
关键词
49Q22; 49L12; 35G50; 60J60; 39B62; OPTIMAL TRANSPORTATION;
D O I
10.1007/s00440-024-01264-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We investigate the quadratic Schrodinger bridge problem, a.k.a. Entropic Optimal Transport problem, and obtain weak semiconvexity and semiconcavity bounds on Schrodinger potentials under mild assumptions on the marginals that are substantially weaker than log-concavity. We deduce from these estimates that Schrodinger bridges satisfy a logarithmic Sobolev inequality on the product space. Our proof strategy is based on a second order analysis of coupling by reflection on the characteristics of the Hamilton-Jacobi-Bellman equation that reveals the existence of new classes of invariant functions for the corresponding flow.
引用
收藏
页码:1045 / 1071
页数:27
相关论文
共 50 条
  • [21] Lp estimates for the Schrödinger type operators
    Yu Liu
    Ji-zheng Huang
    Applied Mathematics-A Journal of Chinese Universities, 2011, 26 : 412 - 424
  • [22] Observable Sets, Potentials and Schrödinger Equations
    Shanlin Huang
    Gengsheng Wang
    Ming Wang
    Communications in Mathematical Physics, 2022, 395 : 1297 - 1343
  • [23] Weak collapse in the nonlinear Schrödinger equation
    Yu. N. Ovchinnikov
    Journal of Experimental and Theoretical Physics Letters, 1999, 69 : 418 - 422
  • [24] Dispersion Estimates for Spherical Schrödinger Equations
    Aleksey Kostenko
    Gerald Teschl
    Julio H. Toloza
    Annales Henri Poincaré, 2016, 17 : 3147 - 3176
  • [25] On the Cauchy problem for logarithmic fractional Schrödinger equation
    Carles, Remi
    Dong, Fangyuan
    PORTUGALIAE MATHEMATICA, 2025, 82 (1-2) : 155 - 175
  • [26] Lp estimates for the Schrdinger type operators
    LIU Yu1 HUANG Ji-zheng2 1 School of Mathematics and Physics
    Applied Mathematics:A Journal of Chinese Universities, 2011, (04) : 412 - 424
  • [27] Tunneling Estimates for Magnetic Schrödinger Operators
    Shu Nakamura
    Communications in Mathematical Physics, 1999, 200 : 25 - 34
  • [28] LOW REGULARITY SOLUTIONS TO THE LOGARITHMIC SCHRÖDINGER EQUATION
    Carles, Remi
    Hayashi, Masayuki
    Ozawa, Tohru
    PURE AND APPLIED ANALYSIS, 2024, 6 (03):
  • [29] Regularized numerical methods for the logarithmic Schrödinger equation
    Weizhu Bao
    Rémi Carles
    Chunmei Su
    Qinglin Tang
    Numerische Mathematik, 2019, 143 : 461 - 487
  • [30] Schrödinger Operators with Distributional Matrix Potentials
    V. N. Moliboga
    Ukrainian Mathematical Journal, 2015, 67 : 748 - 763