Risk factors for 1-year allograft loss in pediatric heart transplant patients using machine learning: An analysis of the pediatric heart transplant society database

被引:1
|
作者
Wisotzkey, Bethany L. [1 ,10 ]
Jaeger, Byron [2 ]
Asante-Korang, Alfred [3 ]
Brickler, Molly [4 ]
Cantor, Ryan S. [5 ]
Everitt, Melanie D. [6 ]
Kirklin, James K. [5 ]
Koehl, Devin [5 ]
Mantell, Benjamin S. [7 ]
Thrush, Philip T. [8 ]
Kuhn, Micheal [9 ]
机构
[1] Univ Arizona, Phoenix Childrens Ctr Heart Care, Coll Med, Div Cardiol, Phoenix, AZ USA
[2] Wake Forest Univ, Bowman Gray Sch Med, Div Publ Hlth Sci, Biostat & Data Sci, Winston Salem, NC USA
[3] Johns Hopkins All Childrens Hosp, Div Cardiol, St Petersburg, FL USA
[4] Med Coll Wisconsin, Herma Heart Inst, Childrens Wisconsin, Dept Pediat,Sect Cardiol, Milwaukee, WI USA
[5] Kirklin Solut, Birmingham, AL USA
[6] Univ Colorado, Childrens Hosp Colorado, Div Cardiol, Aurora, CO USA
[7] Cincinnati Childrens Hosp Med Ctr, Dept Pediat, Div Pediat Cardiol, Cincinnati, OH USA
[8] Northwestern Univ, Ann & Robert H Lurie Childrens Hosp Chicago, Feinberg Sch Med, Div Cardiol, Chicago, IL USA
[9] Loma Linda Univ, Childrens Hosp & Med Ctr, Div Cardiol, Loma Linda, CA USA
[10] Univ Arizona, Phoenix Childrens Ctr Heart Care, Coll Med, Mech Circulatory Support Program,Heart Failure & T, 1919 East Thomas Rd,Main Tower, Phoenix, AZ 85016 USA
关键词
machine learning; pediatric heart transplant; INTERNATIONAL SOCIETY; PREDICTION; MORTALITY; SURVIVAL; REGISTRY; CHILDREN; CURVES; INDEX;
D O I
10.1111/petr.14612
中图分类号
R72 [儿科学];
学科分类号
100202 ;
摘要
BackgroundPediatric heart transplant patients are at greatest risk of allograft loss in the first year. We assessed whether machine learning could improve 1-year risk assessment using the Pediatric Heart Transplant Society database.MethodsPatients transplanted from 2010 to 2019 were included. The primary outcome was 1-year graft loss free survival. We developed a prediction model using cross-validation, by comparing Cox regression, gradient boosting, and random forests. The modeling strategy with the best discrimination and calibration was applied to fit a final prediction model. We used Shapley additive explanation (SHAP) values to perform variable selection and to estimate effect sizes and importance of individual variables when interpreting the final prediction model.ResultsCumulative incidence of graft loss or mortality was 7.6%. Random forests had favorable discrimination and calibration compared to Cox proportional hazards with a C-statistic (95% confidence interval [CI]) of 0.74 (0.72, 0.76) versus 0.71 (0.69, 0.73), and closer alignment between predicted and observed risk. SHAP values computed using the final prediction model indicated that the diagnosis of congenital heart disease (CHD) increased 1 year predicted risk of graft loss by 1.7 (i.e., from 7.6% to 9.3%), need for mechanical circulatory support increased predicted risk by 2, and single ventricle CHD increased predicted risk by 1.9. These three predictors, respectively, were also estimated to be the most important among the 15 predictors in the final model.ConclusionsRisk prediction models used to facilitate patient selection for pediatric heart transplant can be improved without loss of interpretability using machine learning. Data from children transplanted from 2010 to 2019 were analyzed using machine learning. Single ventricle congenital heart disease contributed most to overall risk in the first year, followed closely by mechanical circulatory support at the time of transplant and a history of cardiac surgery prior to being listed for transplant.image
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Circumstances surrounding end-of-life in pediatric patients pre- and post-heart transplant: a report from the Pediatric Heart Transplant Society
    Cousino, Melissa K.
    Yu, Sunkyung
    Blume, Elizabeth D.
    Henderson, Heather T.
    Hollander, Seth A.
    Khan, Sairah
    Parent, John Jerry
    Schumacher, Kurt R.
    PEDIATRIC TRANSPLANTATION, 2022, 26 (02)
  • [32] Using Machine Learning to Assess the Predictive Power of Donor Characteristics in Pediatric Heart Transplant Outcomes
    Porter, M. D.
    Sharff, J. R.
    Dixon, R.
    Haregu, F.
    McCulloch, M.
    JOURNAL OF HEART AND LUNG TRANSPLANTATION, 2024, 43 (04): : S622 - S622
  • [33] Mechanical circulatory support early after pediatric heart transplantation-an analysis from the Pediatric Heart Transplant Society
    Simmonds, Jacob
    Zangwill, Steven D.
    Wisotzkey, Bethany
    Cantor, Ryan
    Zhao, Hong
    Kirklin, James K.
    Gupta, Dipankar
    JOURNAL OF HEART AND LUNG TRANSPLANTATION, 2025, 44 (02): : 227 - 233
  • [34] Factors Affecting Waitlist Times in Pediatric Heart Transplant Patients.
    Dipchand, Anne I.
    Manlhiot, Cedric
    Kantor, Paul F.
    Mital, Seema
    McCrindle, Brian W.
    AMERICAN JOURNAL OF TRANSPLANTATION, 2009, 9 : 196 - 196
  • [35] The impact of pharmacogenomic factors on steroid dependency in pediatric heart transplant patients using logistic regression analysis
    Zheng, HX
    Webber, SA
    Zeevi, A
    Schuetz, E
    Zhang, J
    Lamba, J
    Boyle, GJ
    Wilson, JW
    Burckart, GJ
    PEDIATRIC TRANSPLANTATION, 2004, 8 (06) : 551 - 557
  • [36] Comparison of risk factors and outcomes for pediatric patients listed for heart transplantation after bidirectional Glenn and after Fontan: An analysis from the Pediatric Heart Transplant Study
    Kovach, Joshua R.
    Naftel, David C.
    Pearce, F. Bennett
    Tresler, Margaret A.
    Edens, R. Erik
    Shuhaiber, Jeffrey H.
    Blume, Elizabeth D.
    Fynn-Thompson, Francis
    Kirklin, James K.
    Zangwill, Steven D.
    JOURNAL OF HEART AND LUNG TRANSPLANTATION, 2012, 31 (02): : 133 - 139
  • [37] Maintenance steroid use at 30 days post-transplant and outcomes of pediatric heart transplantation: A propensity matched analysis of the Pediatric Heart Transplant Study database
    Auerbach, Scott R.
    Kukreja, Manisha
    Gilbert, Deborah
    Bastardi, Heather
    Feingold, Brian
    Knecht, Kenneth
    Kaufman, Beth D.
    Brown, Robert N.
    Miyamoto, Shelley D.
    JOURNAL OF HEART AND LUNG TRANSPLANTATION, 2015, 34 (08): : 1066 - 1072
  • [38] Initiation of noninvasive surveillance for allograft rejection in heart transplant patients > 1 year after transplant
    Kewcharoen, Jakrin
    Kim, Jean
    Cummings, Mandi B.
    Leitner, Katie B.
    Suzuki, Erin M. B.
    Banerjee, Dipanjan
    Lum, Corey J.
    CLINICAL TRANSPLANTATION, 2022, 36 (03)
  • [39] Impact of Induction Therapy Type in High and Low Risk Pediatric Patients After Heart Transplant: Analysis of the PHTS Database
    Castleberry, C.
    Amenduri, R.
    Schowengerdt, K.
    Edens, E.
    Hagin, N.
    Pruitt, E.
    Kirklin, J.
    Urschel, S.
    JOURNAL OF HEART AND LUNG TRANSPLANTATION, 2016, 35 (04): : S72 - S73
  • [40] Maintenance Steroid Use and Outcomes of Pediatric Heart Transplantation: A Propensity Matched Analysis of the Pediatric Heart Transplant Study (PHTS) Database
    Auerbach, S. R.
    Kukreja, M.
    Gilbert, D.
    Bastardi, H.
    Feingold, B.
    Knecht, K.
    Kaufman, B. D.
    Brown, R. N.
    Miyamoto, S. D.
    JOURNAL OF HEART AND LUNG TRANSPLANTATION, 2013, 32 (04): : S36 - S37