Risk factors for 1-year allograft loss in pediatric heart transplant patients using machine learning: An analysis of the pediatric heart transplant society database

被引:1
|
作者
Wisotzkey, Bethany L. [1 ,10 ]
Jaeger, Byron [2 ]
Asante-Korang, Alfred [3 ]
Brickler, Molly [4 ]
Cantor, Ryan S. [5 ]
Everitt, Melanie D. [6 ]
Kirklin, James K. [5 ]
Koehl, Devin [5 ]
Mantell, Benjamin S. [7 ]
Thrush, Philip T. [8 ]
Kuhn, Micheal [9 ]
机构
[1] Univ Arizona, Phoenix Childrens Ctr Heart Care, Coll Med, Div Cardiol, Phoenix, AZ USA
[2] Wake Forest Univ, Bowman Gray Sch Med, Div Publ Hlth Sci, Biostat & Data Sci, Winston Salem, NC USA
[3] Johns Hopkins All Childrens Hosp, Div Cardiol, St Petersburg, FL USA
[4] Med Coll Wisconsin, Herma Heart Inst, Childrens Wisconsin, Dept Pediat,Sect Cardiol, Milwaukee, WI USA
[5] Kirklin Solut, Birmingham, AL USA
[6] Univ Colorado, Childrens Hosp Colorado, Div Cardiol, Aurora, CO USA
[7] Cincinnati Childrens Hosp Med Ctr, Dept Pediat, Div Pediat Cardiol, Cincinnati, OH USA
[8] Northwestern Univ, Ann & Robert H Lurie Childrens Hosp Chicago, Feinberg Sch Med, Div Cardiol, Chicago, IL USA
[9] Loma Linda Univ, Childrens Hosp & Med Ctr, Div Cardiol, Loma Linda, CA USA
[10] Univ Arizona, Phoenix Childrens Ctr Heart Care, Coll Med, Mech Circulatory Support Program,Heart Failure & T, 1919 East Thomas Rd,Main Tower, Phoenix, AZ 85016 USA
关键词
machine learning; pediatric heart transplant; INTERNATIONAL SOCIETY; PREDICTION; MORTALITY; SURVIVAL; REGISTRY; CHILDREN; CURVES; INDEX;
D O I
10.1111/petr.14612
中图分类号
R72 [儿科学];
学科分类号
100202 ;
摘要
BackgroundPediatric heart transplant patients are at greatest risk of allograft loss in the first year. We assessed whether machine learning could improve 1-year risk assessment using the Pediatric Heart Transplant Society database.MethodsPatients transplanted from 2010 to 2019 were included. The primary outcome was 1-year graft loss free survival. We developed a prediction model using cross-validation, by comparing Cox regression, gradient boosting, and random forests. The modeling strategy with the best discrimination and calibration was applied to fit a final prediction model. We used Shapley additive explanation (SHAP) values to perform variable selection and to estimate effect sizes and importance of individual variables when interpreting the final prediction model.ResultsCumulative incidence of graft loss or mortality was 7.6%. Random forests had favorable discrimination and calibration compared to Cox proportional hazards with a C-statistic (95% confidence interval [CI]) of 0.74 (0.72, 0.76) versus 0.71 (0.69, 0.73), and closer alignment between predicted and observed risk. SHAP values computed using the final prediction model indicated that the diagnosis of congenital heart disease (CHD) increased 1 year predicted risk of graft loss by 1.7 (i.e., from 7.6% to 9.3%), need for mechanical circulatory support increased predicted risk by 2, and single ventricle CHD increased predicted risk by 1.9. These three predictors, respectively, were also estimated to be the most important among the 15 predictors in the final model.ConclusionsRisk prediction models used to facilitate patient selection for pediatric heart transplant can be improved without loss of interpretability using machine learning. Data from children transplanted from 2010 to 2019 were analyzed using machine learning. Single ventricle congenital heart disease contributed most to overall risk in the first year, followed closely by mechanical circulatory support at the time of transplant and a history of cardiac surgery prior to being listed for transplant.image
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Machine Learning Models as an Accurate Predictor of Survival in Pediatric Heart Transplant
    Brennan, Z.
    Sharaf, O.
    Emerson, D.
    Chikwe, J.
    Kim, R.
    Peek, G.
    Bleiweis, M.
    Jacobs, J.
    JOURNAL OF HEART AND LUNG TRANSPLANTATION, 2024, 43 (04): : S154 - S154
  • [22] Early Postoperative Volume Overload is a Predictor of 1-Year Post-Transplant Mortality in Pediatric Heart Transplant Recipients
    Lim, Michelle J.
    Sim, Myung-Shin
    Pan, Sylvia
    Alejos, Juan
    Federman, Myke
    PEDIATRIC CARDIOLOGY, 2023, 44 (05) : 1014 - 1022
  • [23] Early Postoperative Volume Overload is a Predictor of 1-Year Post-Transplant Mortality in Pediatric Heart Transplant Recipients
    Michelle J. Lim
    Myung-Shin Sim
    Sylvia Pan
    Juan Alejos
    Myke Federman
    Pediatric Cardiology, 2023, 44 : 1014 - 1022
  • [24] Heart Transplant Outcomes in Children with Fontan-Associated Plastic Bronchitis: A Pediatric Heart Transplant Society Analysis
    Bearl, D. W.
    Cantor, R.
    Koehl, D.
    Gossett, J. G.
    Bock, M.
    Halnon, N.
    Glass, L.
    Exil, V.
    Musselwhite, C.
    Kirklin, J.
    Godown, J.
    Ravishankar, C.
    JOURNAL OF HEART AND LUNG TRANSPLANTATION, 2020, 39 (04): : S84 - S85
  • [25] Cardiac Allograft Vasculopathy (CAV) in Children: An 18 Year Pediatric Heart Transplant Study (PHTS) Analysis in 3120 Patients
    Kindel, S. J.
    Chin, C.
    Law, Y.
    Burch, M. M.
    Kirklin, J. K.
    Naftel, D. C.
    Carboni, M. P.
    Arens, A.
    Atz, A. M.
    Dryer, W. J.
    Pahl, E.
    JOURNAL OF HEART AND LUNG TRANSPLANTATION, 2012, 31 (04): : S53 - S54
  • [26] Risk factors for mortality or delisting of patients from the pediatric heart transplant waiting list
    Jeewa, Aamir
    Manlhiot, Cedric
    Kantor, Paul F.
    Mital, Seema
    McCrindle, Brian W.
    Dipchand, Anne I.
    JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY, 2014, 147 (01): : 462 - 468
  • [27] Risk Factors for Cognitive Impairment in Children Undergoing Pediatric Heart Transplant
    Smoot, Leslie B.
    VanderPluym, Christina
    Oliva, Melissa
    Rosenthal, David N.
    Bastardi, Heather
    Singh, Tajinder P.
    Gauvreau, Kimberlee
    Almond, Christopher S.
    JOURNAL OF CARDIAC FAILURE, 2012, 18 (08) : S39 - S40
  • [28] Prolonged hospital length of stay after pediatric heart transplantation: A machine learning and logistic regression predictive model from the Pediatric Heart Transplant Society
    Gupta, Dipankar
    Bansal, Neha
    Jaeger, Byron C.
    Cantor, Ryan C.
    Koehl, Devin
    Kimbro, Allison K.
    Castleberry, Chesney D.
    Pophal, Stephen G.
    Asante-Korang, Alfred
    Schowengerdt, Kenneth
    Kirklin, James K.
    Sutcliffe, David L.
    JOURNAL OF HEART AND LUNG TRANSPLANTATION, 2022, 41 (09): : 1248 - 1257
  • [29] The impact of flow PRA on outcome in pediatric heart recipients in modern era: An analysis of the Pediatric Heart Transplant Study database
    Das, B. B.
    Pruitt, E.
    Molina, K.
    Ravekes, W.
    Auerbach, S.
    Savage, A.
    Knox, L.
    Kirklin, J. K.
    Naftel, D. C.
    Hsu, D.
    PEDIATRIC TRANSPLANTATION, 2018, 22 (01)
  • [30] ABO-incompatible heart transplantation: Analysis of the Pediatric Heart Transplant Study (PHTS) database
    Henderson, Heather T.
    Canter, Charles E.
    Mahle, William T.
    Dipchand, Anne I.
    LaPorte, Kelci
    Schechtman, Kenneth B.
    Zheng, Jie
    Asante-Korang, Alfred
    Singh, Rakesh K.
    Kanter, Kirk R.
    JOURNAL OF HEART AND LUNG TRANSPLANTATION, 2012, 31 (02): : 173 - 179