An Improved Real-Time Object Tracking Algorithm Based on Deep Learning Features

被引:0
|
作者
Wang, Xianyu [1 ,2 ]
LI, Cong [2 ]
LI, Heyi [3 ]
Zhang, Rui [4 ]
Liang, Zhifeng [4 ]
Wang, Hai [3 ]
机构
[1] Xidian Univ, State Key Lab Integrated Serv Networks, Xian 710071, Peoples R China
[2] Acad Space Elect Informat Technol, Xian 710100, Peoples R China
[3] Xidian Univ, Sch Aerosp Sci & Technol, Xian 710071, Peoples R China
[4] Shaanxi Aerosp Technol Applicat Res Inst Co Ltd, Xian 710100, Peoples R China
关键词
object tracking; feature fusion; deep learning; model update; re-detection;
D O I
10.1587/transinf.2022DLP0039
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Visual object tracking is always a challenging task in computer vision. During the tracking, the shape and appearance of the target may change greatly, and because of the lack of sufficient training samples, most of the online learning tracking algorithms will have performance bottlenecks. In this paper, an improved real-time algorithm based on deep learning features is proposed, which combines multi-feature fusion, multi-scale estimation, adaptive updating of target model and re-detection after target loss. The effectiveness and advantages of the proposed algorithm are proved by a large number of comparative experiments with other excellent algorithms on large benchmark datasets.
引用
收藏
页码:786 / 793
页数:8
相关论文
共 50 条
  • [31] Unsupervised Deep Representation Learning for Real-Time Tracking
    Wang, Ning
    Zhou, Wengang
    Song, Yibing
    Ma, Chao
    Liu, Wei
    Li, Houqiang
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2021, 129 (02) : 400 - 418
  • [32] Unsupervised Deep Representation Learning for Real-Time Tracking
    Ning Wang
    Wengang Zhou
    Yibing Song
    Chao Ma
    Wei Liu
    Houqiang Li
    International Journal of Computer Vision, 2021, 129 : 400 - 418
  • [33] A Real-Time Target Tracking Algorithm Based on Improved Kernel Correlation Filter
    Liu, Puqiu
    Du, Jiepng
    He, Shengyang
    Ren, Guanghui
    2021 5TH INTERNATIONAL CONFERENCE ON IMAGING, SIGNAL PROCESSING AND COMMUNICATIONS (ICISPC 2021), 2021, : 5 - 9
  • [34] Real-time object tracking based on improved fully-convolutional siamese network
    Xu, Haisheng
    Zhu, Youchan
    COMPUTERS & ELECTRICAL ENGINEERING, 2020, 86 (86)
  • [35] Real-Time Object Tracking Based on Optical Flow
    Xie Xing
    Yang Yongjie
    Huang, Xinming
    2021 INTERNATIONAL CONFERENCE ON COMPUTER, CONTROL AND ROBOTICS (ICCCR 2021), 2021, : 315 - 318
  • [36] Real-time object tracking based on Hough ferns
    Quan, W. (wquan@home.swjtu.edu.cn), 1600, Science Press (49):
  • [37] Real-Time Object Tracking Based on Android Platform
    Chu, Jinghui
    Zhai, Xingpei
    Su, Guannan
    Chen, Cailian
    MEMS, NANO AND SMART SYSTEMS, PTS 1-6, 2012, 403-408 : 1438 - 1441
  • [38] A sparse probabilistic learning algorithm for real-time tracking
    Williams, O
    Blake, A
    Cipolla, R
    NINTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS I AND II, PROCEEDINGS, 2003, : 353 - 360
  • [39] A real-time deep learning forest fire monitoring algorithm based on an improved Pruned + KD model
    Shengying Wang
    Jing Zhao
    Na Ta
    Xiaoye Zhao
    Mingxia Xiao
    Haicheng Wei
    Journal of Real-Time Image Processing, 2021, 18 : 2319 - 2329
  • [40] Real-Time Deep Learning-Based Object Recognition in Augmented Reality
    Egipko, V
    Zhdanova, M.
    Gapon, N.
    Voronin, V.
    Semenishchev, E.
    REAL-TIME PROCESSING OF IMAGE, DEPTH, AND VIDEO INFORMATION 2024, 2024, 13000