An Improved Real-Time Object Tracking Algorithm Based on Deep Learning Features

被引:0
|
作者
Wang, Xianyu [1 ,2 ]
LI, Cong [2 ]
LI, Heyi [3 ]
Zhang, Rui [4 ]
Liang, Zhifeng [4 ]
Wang, Hai [3 ]
机构
[1] Xidian Univ, State Key Lab Integrated Serv Networks, Xian 710071, Peoples R China
[2] Acad Space Elect Informat Technol, Xian 710100, Peoples R China
[3] Xidian Univ, Sch Aerosp Sci & Technol, Xian 710071, Peoples R China
[4] Shaanxi Aerosp Technol Applicat Res Inst Co Ltd, Xian 710100, Peoples R China
关键词
object tracking; feature fusion; deep learning; model update; re-detection;
D O I
10.1587/transinf.2022DLP0039
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Visual object tracking is always a challenging task in computer vision. During the tracking, the shape and appearance of the target may change greatly, and because of the lack of sufficient training samples, most of the online learning tracking algorithms will have performance bottlenecks. In this paper, an improved real-time algorithm based on deep learning features is proposed, which combines multi-feature fusion, multi-scale estimation, adaptive updating of target model and re-detection after target loss. The effectiveness and advantages of the proposed algorithm are proved by a large number of comparative experiments with other excellent algorithms on large benchmark datasets.
引用
收藏
页码:786 / 793
页数:8
相关论文
共 50 条
  • [21] Real-Time Dynamic SLAM Algorithm Based on Deep Learning
    Su, Peng
    Luo, Suyun
    Huang, Xiaoci
    IEEE ACCESS, 2022, 10 : 87754 - 87766
  • [22] Deep Learning Based, Real-Time Object Detection for Autonomous Driving
    Akyol, Gamze
    Kantarci, Alperen
    Celik, Ali Eren
    Ak, Abdullah Cihan
    2020 28TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2020,
  • [23] Real-Time Deep Learning-Based Object Detection Framework
    Tarimo, William
    Sabra, Moustafa M.
    Hendre, Shonan
    2020 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2020, : 1829 - 1836
  • [24] Improved KCF real-time target tracking algorithm
    Wang Y.
    Chai H.
    Yang D.
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2020, 48 (01): : 32 - 36
  • [25] Real-time Keypoint-Based Object Tracking via Online Learning
    Guo, Bo
    Liu, Juan
    2013 INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND TECHNOLOGY (ICIST), 2013, : 907 - 911
  • [26] GREEDY ALGORITHM FOR REAL-TIME MULTI-OBJECT TRACKING
    Kim, Tae-Ho
    Lee, Changhoon
    Yoo, Chang D.
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 398 - 402
  • [27] Analysis Based on Recent Deep Learning Approaches Applied in Real-Time Multi-Object Tracking: A Review
    Kalake, Lesole
    Wan, Wanggen
    Hou, Li
    IEEE ACCESS, 2021, 9 : 32650 - 32671
  • [28] Implementation of object recognition and tracking algorithm on real-time basis
    Kwak, Jae Chang
    Park, Tae Ryong
    Koo, Yong Seo
    Lee, Kwang Yeob
    2013 IEEE EUROCON, 2013, : 2000 - 2003
  • [29] Real-time object detection algorithm based on improved YOLOv3
    Zhang, Xiuling
    Dong, Xiaopeng
    Wei, Qijun
    Zhou, Kaixuan
    JOURNAL OF ELECTRONIC IMAGING, 2019, 28 (05)
  • [30] Real-Time Object Recognition Algorithm Based on Deep Convolutional Neural Network
    Yang, Lihong
    Wang, Liewei
    Wu, Shuo
    2018 IEEE 3RD INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND BIG DATA ANALYSIS (ICCCBDA), 2018, : 331 - 335