Emergent statistical laws in single-cell transcriptomic data

被引:3
|
作者
Lazzardi, Silvia [1 ,2 ]
Valle, Filippo [1 ,2 ]
Mazzolini, Andrea [3 ,4 ]
Scialdone, Antonio [5 ,6 ,7 ]
Caselle, Michele [1 ,2 ]
Osella, Matteo [1 ,2 ]
机构
[1] Univ Turin, Dept Phys, Via P Giuria 1, I-10125 Turin, Italy
[2] INFN, Via P Giuria 1, I-10125 Turin, Italy
[3] Sorbonne Univ, PSL Univ, CNRS, Lab Phys,Ecole Normale Super, F-75005 Paris, France
[4] Univ Paris, F-75005 Paris, France
[5] Helmholtz Zentrum Munchen, Inst Epigenet & Stem Cells, Feodor Lynen Str 21, D-81377 Munich, Germany
[6] Helmholtz Zentrum Munchen, Inst Funct Epigenet, Ingolstadter Landstr 1, D-85764 Neuherberg, Germany
[7] Helmholtz Zentrum Munchen, Inst Computat Biol, Ingolstadter Landstr 1, D-85764 Neuherberg, Germany
关键词
GENE-EXPRESSION; RNA-SEQ; DISTRIBUTIONS; FEATURES; REVEALS; ORIGINS; SYSTEMS; GROWTH;
D O I
10.1103/PhysRevE.107.044403
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Large-scale data on single-cell gene expression have the potential to unravel the specific transcriptional programs of different cell types. The structure of these expression datasets suggests a similarity with several other complex systems that can be analogously described through the statistics of their basic building blocks. Transcriptomes of single cells are collections of messenger RNA abundances transcribed from a common set of genes just as books are different collections of words from a shared vocabulary, genomes of different species are specific compositions of genes belonging to evolutionary families, and ecological niches can be described by their species abundances. Following this analogy, we identify several emergent statistical laws in single-cell transcriptomic data closely similar to regularities found in linguistics, ecology, or genomics. A simple mathematical framework can be used to analyze the relations between different laws and the possible mechanisms behind their ubiquity. Importantly, treatable statistical models can be useful tools in transcriptomics to disentangle the actual biological variability from general statistical effects present in most component systems and from the consequences of the sampling process inherent to the experimental technique.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] SINGLE-CELL TRANSCRIPTOMIC CHARACTERIZATION OF MICROSCOPIC COLITIS
    Halvorsen, Stefan
    Thomas, Molly
    Mino-Kenudson, Mari
    Burke, Kristin E.
    Morgan, David
    Miller, Kaia C.
    McGoldrick, Jessica
    Yarze, Joseph C.
    Staller, Kyle
    Chung, Daniel
    Villani, Alexandra-Chloe
    Sassi, Slim
    Khalili, Hamed
    GASTROENTEROLOGY, 2024, 166 (05) : S611 - S611
  • [42] Network-based integrative analysis of single-cell transcriptomic and epigenomic data for cell types
    Wu, Wenming
    Zhang, Wensheng
    Ma, Xiaoke
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (02)
  • [43] InterCellar enables interactive analysis and exploration of cell-cell communication in single-cell transcriptomic data
    Interlandi, Marta
    Kerl, Kornelius
    Dugas, Martin
    COMMUNICATIONS BIOLOGY, 2022, 5 (01)
  • [44] SAREV: A review on statistical analytics of single-cell RNA sequencing data
    Ellis, Dorothy
    Wu, Dongyuan
    Datta, Susmita
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2022, 14 (04):
  • [45] Statistical and machine learning methods for immunoprofiling based on single-cell data
    Zhang, Jingxuan
    Li, Jia
    Lin, Lin
    HUMAN VACCINES & IMMUNOTHERAPEUTICS, 2023, 19 (02)
  • [46] Statistical methods for analysis of single-cell RNA-sequencing data
    Das, Samarendra
    Rai, Shesh N.
    METHODSX, 2021, 8
  • [47] A data-driven single-cell and spatial transcriptomic map of the human prefrontal cortex
    Huuki-Myers, Louise A.
    Spangler, Abby
    Eagles, Nicholas J.
    Montgomery, Kelsey D.
    Kwon, Sang Ho
    Guo, Boyi
    Grant-Peters, Melissa
    Divecha, Heena R.
    Tippani, Madhavi
    Sriworarat, Chaichontat
    Nguyen, Annie B.
    Ravichandran, Prashanthi
    Tran, Matthew N.
    Seyedian, Arta
    Hyde, Thomas M.
    Kleinman, Joel E.
    Battle, Alexis
    Page, Stephanie C.
    Ryten, Mina
    Hicks, Stephanie C.
    Martinowich, Keri
    Collado-Torres, Leonardo
    Maynard, Kristen R.
    SCIENCE, 2024, 384 (6698)
  • [48] Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data
    Aditya Pratapa
    Amogh P. Jalihal
    Jeffrey N. Law
    Aditya Bharadwaj
    T. M. Murali
    Nature Methods, 2020, 17 : 147 - 154
  • [49] scEGG: an exogenous gene-guided clustering method for single-cell transcriptomic data
    Hu, Dayu
    Guan, Renxiang
    Liang, Ke
    Yu, Hao
    Quan, Hao
    Zhao, Yawei
    Liu, Xinwang
    He, Kunlun
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (06)
  • [50] Fishing Innate Immune System Properties through the Transcriptomic Single-Cell Data of Teleostei
    Bobrovskikh, Aleksandr V.
    Zubairova, Ulyana S.
    Doroshkov, Alexey V.
    BIOLOGY-BASEL, 2023, 12 (12):