Emergent statistical laws in single-cell transcriptomic data

被引:3
|
作者
Lazzardi, Silvia [1 ,2 ]
Valle, Filippo [1 ,2 ]
Mazzolini, Andrea [3 ,4 ]
Scialdone, Antonio [5 ,6 ,7 ]
Caselle, Michele [1 ,2 ]
Osella, Matteo [1 ,2 ]
机构
[1] Univ Turin, Dept Phys, Via P Giuria 1, I-10125 Turin, Italy
[2] INFN, Via P Giuria 1, I-10125 Turin, Italy
[3] Sorbonne Univ, PSL Univ, CNRS, Lab Phys,Ecole Normale Super, F-75005 Paris, France
[4] Univ Paris, F-75005 Paris, France
[5] Helmholtz Zentrum Munchen, Inst Epigenet & Stem Cells, Feodor Lynen Str 21, D-81377 Munich, Germany
[6] Helmholtz Zentrum Munchen, Inst Funct Epigenet, Ingolstadter Landstr 1, D-85764 Neuherberg, Germany
[7] Helmholtz Zentrum Munchen, Inst Computat Biol, Ingolstadter Landstr 1, D-85764 Neuherberg, Germany
关键词
GENE-EXPRESSION; RNA-SEQ; DISTRIBUTIONS; FEATURES; REVEALS; ORIGINS; SYSTEMS; GROWTH;
D O I
10.1103/PhysRevE.107.044403
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Large-scale data on single-cell gene expression have the potential to unravel the specific transcriptional programs of different cell types. The structure of these expression datasets suggests a similarity with several other complex systems that can be analogously described through the statistics of their basic building blocks. Transcriptomes of single cells are collections of messenger RNA abundances transcribed from a common set of genes just as books are different collections of words from a shared vocabulary, genomes of different species are specific compositions of genes belonging to evolutionary families, and ecological niches can be described by their species abundances. Following this analogy, we identify several emergent statistical laws in single-cell transcriptomic data closely similar to regularities found in linguistics, ecology, or genomics. A simple mathematical framework can be used to analyze the relations between different laws and the possible mechanisms behind their ubiquity. Importantly, treatable statistical models can be useful tools in transcriptomics to disentangle the actual biological variability from general statistical effects present in most component systems and from the consequences of the sampling process inherent to the experimental technique.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Single-cell transcriptomic, transcriptomic, and metabolomic characterization of human atherosclerosis
    Liu, Xiaoyang
    Li, Li
    Yin, Yiru
    Zhang, Likui
    Wang, Wenhao
    ANNALS OF TRANSLATIONAL MEDICINE, 2022,
  • [32] InterCellar enables interactive analysis and exploration of cell−cell communication in single-cell transcriptomic data
    Marta Interlandi
    Kornelius Kerl
    Martin Dugas
    Communications Biology, 5
  • [33] Integrating single-cell transcriptomic data across different conditions, technologies, and species
    Andrew Butler
    Paul Hoffman
    Peter Smibert
    Efthymia Papalexi
    Rahul Satija
    Nature Biotechnology, 2018, 36 : 411 - 420
  • [34] Integrating single-cell transcriptomic data across different conditions, technologies, and species
    Butler, Andrew
    Hoffman, Paul
    Smibert, Peter
    Papalexi, Efthymia
    Satija, Rahul
    NATURE BIOTECHNOLOGY, 2018, 36 (05) : 411 - +
  • [35] Hubness reduction improves clustering and trajectory inference in single-cell transcriptomic data
    Amblard, Elise
    Bac, Jonathan
    Chervov, Alexander
    Soumelis, Vassili
    Zinovyev, Andrei
    BIOINFORMATICS, 2022, 38 (04) : 1045 - 1051
  • [36] A Joint Batch Correction and Adaptive Clustering Method of Single-Cell Transcriptomic Data
    An, Sijing
    Shi, Jinhui
    Liu, Runyan
    Wang, Jing
    Hu, Shuofeng
    Dong, Guohua
    Ying, Xiaomin
    He, Zhen
    MATHEMATICS, 2023, 11 (24)
  • [37] Prediction of protein-RNA interactions from single-cell transcriptomic data
    Fiorentino, Jonathan
    Armaos, Alexandros
    Colantoni, Alessio
    Tartaglia, Gian Gaetano
    NUCLEIC ACIDS RESEARCH, 2024, 52 (06)
  • [38] Opportunities and tradeoffs in single-cell transcriptomic technologies
    Conte, Matilde I.
    Fuentes-Trillo, Azahara
    Conde, Cecilia Dominguez
    TRENDS IN GENETICS, 2024, 40 (01) : 83 - 93
  • [39] A brief review of single-cell transcriptomic technologies
    Kalisky, Tomer
    Oriel, Sarit
    Bar-Lev, Tali Hana
    Ben-Haim, Nissim
    Trink, Ariel
    Wineberg, Yishay
    Kanter, Itamar
    Gilad, Shlomit
    Pyne, Saumyadipta
    BRIEFINGS IN FUNCTIONAL GENOMICS, 2018, 17 (01) : 64 - 76
  • [40] Single-Cell Transcriptomic Analysis of Tumor Heterogeneity
    Levitin, Hanna Mendes
    Yuan, Jinzhou
    Sims, Peter A.
    TRENDS IN CANCER, 2018, 4 (04): : 264 - 268