Emergent statistical laws in single-cell transcriptomic data

被引:3
|
作者
Lazzardi, Silvia [1 ,2 ]
Valle, Filippo [1 ,2 ]
Mazzolini, Andrea [3 ,4 ]
Scialdone, Antonio [5 ,6 ,7 ]
Caselle, Michele [1 ,2 ]
Osella, Matteo [1 ,2 ]
机构
[1] Univ Turin, Dept Phys, Via P Giuria 1, I-10125 Turin, Italy
[2] INFN, Via P Giuria 1, I-10125 Turin, Italy
[3] Sorbonne Univ, PSL Univ, CNRS, Lab Phys,Ecole Normale Super, F-75005 Paris, France
[4] Univ Paris, F-75005 Paris, France
[5] Helmholtz Zentrum Munchen, Inst Epigenet & Stem Cells, Feodor Lynen Str 21, D-81377 Munich, Germany
[6] Helmholtz Zentrum Munchen, Inst Funct Epigenet, Ingolstadter Landstr 1, D-85764 Neuherberg, Germany
[7] Helmholtz Zentrum Munchen, Inst Computat Biol, Ingolstadter Landstr 1, D-85764 Neuherberg, Germany
关键词
GENE-EXPRESSION; RNA-SEQ; DISTRIBUTIONS; FEATURES; REVEALS; ORIGINS; SYSTEMS; GROWTH;
D O I
10.1103/PhysRevE.107.044403
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Large-scale data on single-cell gene expression have the potential to unravel the specific transcriptional programs of different cell types. The structure of these expression datasets suggests a similarity with several other complex systems that can be analogously described through the statistics of their basic building blocks. Transcriptomes of single cells are collections of messenger RNA abundances transcribed from a common set of genes just as books are different collections of words from a shared vocabulary, genomes of different species are specific compositions of genes belonging to evolutionary families, and ecological niches can be described by their species abundances. Following this analogy, we identify several emergent statistical laws in single-cell transcriptomic data closely similar to regularities found in linguistics, ecology, or genomics. A simple mathematical framework can be used to analyze the relations between different laws and the possible mechanisms behind their ubiquity. Importantly, treatable statistical models can be useful tools in transcriptomics to disentangle the actual biological variability from general statistical effects present in most component systems and from the consequences of the sampling process inherent to the experimental technique.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Deterministic patterns in single-cell transcriptomic data
    Cao, Zhixing
    Wang, Yiling
    Grima, Ramon
    NPJ SYSTEMS BIOLOGY AND APPLICATIONS, 2025, 11 (01)
  • [2] Global coordination level in single-cell transcriptomic data
    Amit, Guy
    Ben Porath, Dana Vaknin
    Levy, Orr
    Hamdi, Omer
    Bashan, Amir
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [3] Global coordination level in single-cell transcriptomic data
    Guy Amit
    Dana Vaknin Ben Porath
    Orr Levy
    Omer Hamdi
    Amir Bashan
    Scientific Reports, 12
  • [4] Statistical analysis of single-cell protein data
    Fridley, Brooke L.
    Vandekar, Simon
    Chervoneva, Inna
    Wrobel, Julia
    Ma, Siyuan
    BIOCOMPUTING 2024, PSB 2024, 2024, : 654 - 660
  • [5] Scrublet: Computational Identification of Cell Doublets in Single-Cell Transcriptomic Data
    Wolock, Samuel L.
    Lopez, Romain
    Klein, Allon M.
    CELL SYSTEMS, 2019, 8 (04) : 281 - +
  • [6] Topological and geometric analysis of cell states in single-cell transcriptomic data
    Huynh, Tram
    Cang, Zixuan
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (03)
  • [7] Single-cell Transcriptomic Analysis
    Zheng, Zhihong
    Chen, Enguo
    Lu, Weiguo
    Mouradian, Gary
    Hodges, Matthew
    Liang, Mingyu
    Liu, Pengyuan
    Lu, Yan
    COMPREHENSIVE PHYSIOLOGY, 2020, 10 (02) : 767 - 783
  • [8] Cross-Species Analysis of Single-Cell Transcriptomic Data
    Shafer, Maxwell E. R.
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2019, 7
  • [9] WebAtlas pipeline for integrated single-cell and spatial transcriptomic data
    Li, Tong
    Horsfall, David
    Basurto-Lozada, Daniela
    Roberts, Kenny
    Prete, Martin
    Lawrence, John E. G.
    He, Peng
    Tuck, Elisabeth
    Moore, Josh
    Yoldas, Aybuke Kupcu
    Babalola, Kolawole
    Hartley, Matthew
    Ghazanfar, Shila
    Teichmann, Sarah A.
    Haniffa, Muzlifah
    Bayraktar, Omer Ali
    NATURE METHODS, 2025, 22 (01) : 3 - 5
  • [10] Statistical evidence for the presence of trajectory in single-cell data
    Lovemore Tenha
    Mingzhou Song
    BMC Bioinformatics, 23