Electrostatic turbulence in EAST plasmas with internal transport barrier

被引:1
|
作者
Ma, Yuehao [1 ]
Zhang, Bin [2 ]
Bao, Jian [3 ]
Lin, Z. [4 ]
Zhang, Wenlu [3 ]
Cai, Huishan [1 ]
Li, Ding [3 ,5 ,6 ]
机构
[1] Univ Sci & Technol China, Sch Nucl Sci & Technol, CAS Key Lab Geospace Environm, Hefei 230026, Peoples R China
[2] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China
[3] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
[4] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA
[5] Songshan Lake Mat Lab, Dongguan 523808, Guangdong, Peoples R China
[6] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
trapped electrons; ion temperature gradient; internal transport barrier; zonal flow; EAST; PARTICLE SIMULATION; ZONAL FLOWS; FLUCTUATIONS; SUPPRESSION; STABILITY; PHYSICS; SHEAR;
D O I
10.1088/1741-4326/acc116
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Based on first-principles nonlinear gyrokinetic simulations, the electrostatic turbulence properties in the internal transport barrier (ITB) region of an Experimental Advanced Superconducting Tokamak discharge (#93890) are investigated. Specifically, ITBs with steep density and temperature gradients are located in the weakly negative magnetic shear region at the plasma center. In the linear stage, the growth rate and frequency of the ion temperature gradient (ITG) mode increase significantly due to resonant excitation by trapped electrons. That is, the resonance between trapped electrons and the ITG becomes strong due to the precession drift reversal of trapped electrons by the negative magnetic shear and Shafranov shift. Meanwhile, the trapped electron mode is stable in the ITB region due to only a very small fraction of electrons precessing in the direction of the electron diamagnetic drift. Nonlinear simulations show that, after considering the non-adiabatic effect of trapped electrons, the heat conductivity of ions and the turbulence intensity increase by at least a factor of 7 compared with the results only considering the adiabatic effect of electrons. The zonal charge density of trapped electrons can partially cancel that of ions, which weakens the intensity of the zonal flow, and consequently reduces the zonal flow regulation and enhances the turbulent transport.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Comparison of Ion Internal Transport Barrier Formation between Hydrogen and Helium Dominated Plasmas
    Nagaoka, Kenichi
    Takahashi, Hiromi
    Tanaka, Kenji
    Osakabe, Masaki
    Murakami, Sadayoshi
    Maeta, Shogo
    Yokoyama, Masayuki
    Fujii, Keisuke
    Nakano, Haruhisa
    Yamada, Hiroshi
    Takeiri, Yasuhiko
    Ida, Katsumi
    Yoshinuma, Mikiro
    PLASMA AND FUSION RESEARCH, 2016, 11
  • [42] Pressure profile modification of internal transport barrier plasmas in Alcator C-Mod
    Rice, JE
    Bonoli, PT
    Fiore, CL
    Lee, WD
    Marmar, ES
    Wukitch, SJ
    Granetz, RS
    Hubbard, AE
    Hughes, JW
    Irby, JH
    Lin, Y
    Mossessian, D
    Wolfe, SM
    Zhurovich, K
    Greenwald, MJ
    Hutchinson, IH
    Porkolab, M
    Snipes, JA
    NUCLEAR FUSION, 2003, 43 (08) : 781 - 788
  • [43] Role of collisionless trapped electron mode in tokamak plasmas with electron internal transport barrier
    Li, JQ
    Kishimoto, Y
    PLASMA PHYSICS AND CONTROLLED FUSION, 2002, 44 : A479 - A485
  • [44] Ion internal transport barrier in neutral beam heated plasmas on HL-2A
    Yu, D. L.
    Wei, Y. L.
    Liu, L.
    Dong, J. Q.
    Ida, K.
    Itoh, K.
    Sun, A. P.
    Cao, J. Y.
    Shi, Z. B.
    Wang, Z. X.
    Xiao, Y.
    Yuan, B. S.
    Du, H. R.
    He, X. X.
    Chen, W. J.
    Ma, Q.
    Itoh, S. -I.
    Zhao, K. J.
    Zhou, Y.
    Wang, J.
    Ji, X. Q.
    Zhong, W. L.
    Li, Y. G.
    Gao, J. M.
    Deng, W.
    Liu, Yi
    Xu, Y.
    Yan, L. W.
    Yang, Q. W.
    Ding, X. T.
    Duan, X. R.
    Liu, Yong
    NUCLEAR FUSION, 2016, 56 (05)
  • [45] FORMATION OF ELECTROSTATIC POTENTIAL BARRIER BETWEEN DIFFERENT PLASMAS
    HATAKEYAMA, R
    SUZUKI, Y
    SATO, N
    PHYSICAL REVIEW LETTERS, 1983, 50 (16) : 1203 - 1206
  • [46] Stabilization of ion temperature gradient driven turbulence and formation of an internal transport barrier in a tokamak
    Voitsekhovitch, I
    Garbet, X
    Benkadda, S
    Beyer, P
    Figarella, CF
    PHYSICS OF PLASMAS, 2002, 9 (11) : 4671 - 4684
  • [47] TRAPPED-PARTICLE SCATTERING BY ELECTROSTATIC TURBULENCE IN TOROIDAL PLASMAS
    DOBROWOLNY, M
    OREFICE, A
    POZZOLI, R
    NUCLEAR FUSION, 1973, 13 (04) : 485 - 496
  • [48] Characterizing electrostatic turbulence in tokamak plasmas with high MHD activity
    Guimaraes-Filho, Z. O.
    dos Santos Lima, G. Z.
    Caldas, I. L.
    Viana, R. L.
    Nascimento, I. C.
    Kuznetsov, Yu K.
    XI LATIN AMERICAN WORKSHOP ON NONLINEAR PHENOMENA, 2010, 246
  • [49] Stochastic modelling of turbulence and anomalous transport in plasmas
    Vanden Eijnden, E
    Grecos, A
    JOURNAL OF PLASMA PHYSICS, 1998, 59 : 683 - 694
  • [50] Turbulence regulation and transport barriers in laboratory plasmas
    Kim, Eun-jin
    First International Workshop and Summer School on Plasma Physics, 2006, 44 : 10 - 19