Electrostatic turbulence in EAST plasmas with internal transport barrier

被引:1
|
作者
Ma, Yuehao [1 ]
Zhang, Bin [2 ]
Bao, Jian [3 ]
Lin, Z. [4 ]
Zhang, Wenlu [3 ]
Cai, Huishan [1 ]
Li, Ding [3 ,5 ,6 ]
机构
[1] Univ Sci & Technol China, Sch Nucl Sci & Technol, CAS Key Lab Geospace Environm, Hefei 230026, Peoples R China
[2] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China
[3] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
[4] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA
[5] Songshan Lake Mat Lab, Dongguan 523808, Guangdong, Peoples R China
[6] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
trapped electrons; ion temperature gradient; internal transport barrier; zonal flow; EAST; PARTICLE SIMULATION; ZONAL FLOWS; FLUCTUATIONS; SUPPRESSION; STABILITY; PHYSICS; SHEAR;
D O I
10.1088/1741-4326/acc116
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Based on first-principles nonlinear gyrokinetic simulations, the electrostatic turbulence properties in the internal transport barrier (ITB) region of an Experimental Advanced Superconducting Tokamak discharge (#93890) are investigated. Specifically, ITBs with steep density and temperature gradients are located in the weakly negative magnetic shear region at the plasma center. In the linear stage, the growth rate and frequency of the ion temperature gradient (ITG) mode increase significantly due to resonant excitation by trapped electrons. That is, the resonance between trapped electrons and the ITG becomes strong due to the precession drift reversal of trapped electrons by the negative magnetic shear and Shafranov shift. Meanwhile, the trapped electron mode is stable in the ITB region due to only a very small fraction of electrons precessing in the direction of the electron diamagnetic drift. Nonlinear simulations show that, after considering the non-adiabatic effect of trapped electrons, the heat conductivity of ions and the turbulence intensity increase by at least a factor of 7 compared with the results only considering the adiabatic effect of electrons. The zonal charge density of trapped electrons can partially cancel that of ions, which weakens the intensity of the zonal flow, and consequently reduces the zonal flow regulation and enhances the turbulent transport.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Computational images of internal-transport-barrier oscillations in tokamak plasmas
    Bizarro, Joao P. S.
    Litaudon, Xavier L.
    Tala, Tuomas J. J.
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2008, 36 (04) : 1090 - 1091
  • [22] Transition phenomena and thermal transport properties in LHD plasmas with an electron internal transport barrier
    Shimozuma, T
    Kubo, S
    Idei, H
    Inagaki, S
    Tamura, N
    Tokuzawa, T
    Morisaki, T
    Watanabe, KY
    Ida, K
    Yamada, I
    Narihara, K
    Muto, S
    Yokoyama, M
    Yoshimura, Y
    Notake, T
    Ohkubo, K
    Seki, T
    Saito, K
    Kumazawa, R
    Mutoh, T
    Watari, T
    Komori, A
    NUCLEAR FUSION, 2005, 45 (11) : 1396 - 1403
  • [23] Heat and momentum transport of ion internal transport barrier plasmas on the Large Helical Device
    Nagaoka, K.
    Ida, K.
    Yoshinuma, M.
    Takeiri, Y.
    Yokoyama, M.
    Morita, S.
    Tanaka, K.
    Ido, T.
    Shimizu, A.
    Tamura, N.
    Funaba, H.
    Murakami, S.
    Goto, M.
    Takahashi, H.
    Suzuki, C.
    Suzuki, Y.
    Ikeda, K.
    Osakabe, M.
    Tsumori, K.
    Nakano, H.
    Kaneko, O.
    Yamada, H.
    NUCLEAR FUSION, 2011, 51 (08)
  • [24] Transport characteristics of deuterium and hydrogen plasmas with ion internal transport barrier in the Large Helical Device
    Nagaoka, K.
    Takahashi, H.
    Nakata, M.
    Satake, S.
    Tanaka, K.
    Mukai, K.
    Yokoyama, M.
    Nakano, H.
    Murakami, S.
    Ida, K.
    Yoshinuma, M.
    Ohdachi, S.
    Bando, T.
    Nunami, M.
    Seki, R.
    Yamaguchi, H.
    Osakabe, M.
    Morisaki, T.
    NUCLEAR FUSION, 2019, 59 (10)
  • [25] The role of ion and electron electrostatic turbulence in characterizing stationary particle transport in the core of tokamak plasmas
    Fable, E.
    Angioni, C.
    Sauter, O.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2010, 52 (01)
  • [26] Discontinuity model for internal transport barrier formation in reversed magnetic shear plasmas
    Kishimoto, Y
    Kim, JY
    Horton, W
    Tajima, T
    LeBrun, MJ
    Dettrick, SA
    Li, JQ
    Shirai, S
    NUCLEAR FUSION, 2000, 40 (3Y) : 667 - 676
  • [27] Internal transport barrier simulation with pellet injection in tokamak and helical reactor plasmas
    Higashiyama, Y.
    Yamazaki, K.
    Garcia, J.
    Arimoto, H.
    Shoji, T.
    11TH IAEA TECHNICAL MEETING ON H-MODE PHYSICS AND TRANSPORT BARRIERS, 2008, 123
  • [28] Thermal ion diffusion and evolution of the internal transport barrier in reversed shear plasmas
    Voitsekhovitch, I
    Garbet, X
    Moreau, D
    Bush, CE
    CZECHOSLOVAK JOURNAL OF PHYSICS, 1998, 48 : 85 - 90
  • [29] GTC simulation of turbulence transport at internal transport barrier of HL-2M tokamak
    Xiao Z.
    Li X.
    Wang S.
    He Jishu/Nuclear Techniques, 2024, 47 (05):
  • [30] Multiple interactions between fishbone instabilities and internal transport barriers in EAST plasmas
    Ge, Wanling
    Wang, Zheng-Xiong
    Wang, Feng
    Liu, Zixi
    Xu, Liqing
    NUCLEAR FUSION, 2023, 63 (01)