Electrostatic turbulence in EAST plasmas with internal transport barrier

被引:1
|
作者
Ma, Yuehao [1 ]
Zhang, Bin [2 ]
Bao, Jian [3 ]
Lin, Z. [4 ]
Zhang, Wenlu [3 ]
Cai, Huishan [1 ]
Li, Ding [3 ,5 ,6 ]
机构
[1] Univ Sci & Technol China, Sch Nucl Sci & Technol, CAS Key Lab Geospace Environm, Hefei 230026, Peoples R China
[2] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China
[3] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
[4] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA
[5] Songshan Lake Mat Lab, Dongguan 523808, Guangdong, Peoples R China
[6] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
trapped electrons; ion temperature gradient; internal transport barrier; zonal flow; EAST; PARTICLE SIMULATION; ZONAL FLOWS; FLUCTUATIONS; SUPPRESSION; STABILITY; PHYSICS; SHEAR;
D O I
10.1088/1741-4326/acc116
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Based on first-principles nonlinear gyrokinetic simulations, the electrostatic turbulence properties in the internal transport barrier (ITB) region of an Experimental Advanced Superconducting Tokamak discharge (#93890) are investigated. Specifically, ITBs with steep density and temperature gradients are located in the weakly negative magnetic shear region at the plasma center. In the linear stage, the growth rate and frequency of the ion temperature gradient (ITG) mode increase significantly due to resonant excitation by trapped electrons. That is, the resonance between trapped electrons and the ITG becomes strong due to the precession drift reversal of trapped electrons by the negative magnetic shear and Shafranov shift. Meanwhile, the trapped electron mode is stable in the ITB region due to only a very small fraction of electrons precessing in the direction of the electron diamagnetic drift. Nonlinear simulations show that, after considering the non-adiabatic effect of trapped electrons, the heat conductivity of ions and the turbulence intensity increase by at least a factor of 7 compared with the results only considering the adiabatic effect of electrons. The zonal charge density of trapped electrons can partially cancel that of ions, which weakens the intensity of the zonal flow, and consequently reduces the zonal flow regulation and enhances the turbulent transport.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Observation of internal transport barrier in ELMy H-mode plasmas on the EAST tokamak
    Yang, Y.
    Gao, X.
    Liu, H. Q.
    Li, G. Q.
    Zhang, T.
    Zeng, L.
    Liu, Y. K.
    Wu, M. Q.
    Kong, D. F.
    Ming, T. F.
    Han, X.
    Wang, Y. M.
    Zang, Q.
    Lyu, B.
    Li, Y. Y.
    Duan, Y. M.
    Zhong, F. B.
    Li, K.
    Xu, L. Q.
    Gong, X. Z.
    Sun, Y. W.
    Qian, J. P.
    Ding, B. J.
    Liu, Z. X.
    Liu, F. K.
    Hu, C. D.
    Xiang, N.
    Liang, Y. F.
    Zhang, X. D.
    Wan, B. N.
    Li, J. G.
    Wan, Y. X.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2017, 59 (08)
  • [2] Internal transport barrier in tokamak and helical plasmas
    Ida, K.
    Fujita, T.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2018, 60 (03)
  • [3] NEOCLASSICAL AND ANOMALOUS TRANSPORT IN AXISYMMETRICAL TOROIDAL PLASMAS WITH ELECTROSTATIC TURBULENCE
    SUGAMA, H
    HORTON, W
    PHYSICS OF PLASMAS, 1995, 2 (08) : 2989 - 3006
  • [4] Linear stability analysis of the electrostatic drift wave in the electron thermal internal transport barrier in EAST
    Wang, Jie
    Qiu, Yuefeng
    Wang, Shaojie
    PHYSICS OF PLASMAS, 2024, 31 (05)
  • [5] Turbulence simulations of transport barrier relaxations in tokamak edge plasmas
    Beyer, P.
    Benkadda, S.
    Fuhr-Chaudier, G.
    Garbet, X.
    Ghendrih, Ph
    Sarazin, Y.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2007, 49 (04) : 507 - 523
  • [6] Transport barrier onset and edge turbulence shortfall in fusion plasmas
    Dif-Pradalier, Guilhem
    Ghendrih, Philippe
    Sarazin, Yanick
    Caschera, Elisabetta
    Clairet, Frederic
    Camenen, Yann
    Donnel, Peter
    Garbet, Xavier
    Grandgirard, Virginie
    Munschy, Yann
    Vermare, Laure
    Widmer, Fabien
    COMMUNICATIONS PHYSICS, 2022, 5 (01)
  • [7] Physics of internal transport barrier of toroidal helical plasmas
    Itoh, K.
    Toda, S.
    Fujisawa, A.
    Itoh, S. -I.
    Yagi, M.
    Fukuyama, A.
    Diamond, P. H.
    Ida, K.
    PHYSICS OF PLASMAS, 2007, 14 (02)
  • [8] Transport processes and entropy production in toroidally rotating plasmas with electrostatic turbulence
    Sugama, H
    Horton, W
    PHYSICS OF PLASMAS, 1997, 4 (02) : 405 - 418
  • [9] Study of internal transport barrier triggering mechanism in tokamak plasmas
    Dong, JQ
    Mou, ZZ
    Long, YX
    Mahajan, SM
    PHYSICS OF PLASMAS, 2004, 11 (12) : 5673 - 5679
  • [10] Minimum energy state of tokamak plasmas with an internal transport barrier
    Tamano, T
    Katanuma, I
    PLASMA PHYSICS AND CONTROLLED FUSION, 2002, 44 : A307 - A312