A superconducting quantum simulator based on a photonic-bandgap metamaterial

被引:51
|
作者
Zhang, Xueyue [1 ,2 ,3 ]
Kim, Eunjong [1 ,2 ,3 ]
Mark, Daniel K. [4 ]
Choi, Soonwon [4 ]
Painter, Oskar [1 ,2 ,3 ,5 ]
机构
[1] CALTECH, Thomas J Watson Sr Lab Appl Phys, Pasadena, CA 91125 USA
[2] CALTECH, Kavli Nanosci Inst, Pasadena, CA 91125 USA
[3] CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
[4] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA
[5] AWS Ctr Quantum Comp, Pasadena, CA 91125 USA
关键词
RANGE INTERACTIONS; ENTANGLEMENT; PROPAGATION; PHASES;
D O I
10.1126/science.ade7651
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Synthesizing many-body quantum systems with various ranges of interactions facilitates the study of quantum chaotic dynamics. Such extended interaction range can be enabled by using nonlocal degrees of freedom such as photonic modes in an otherwise locally connected structure. Here, we present a superconducting quantum simulator in which qubits are connected through an extensible photonic-bandgap metamaterial, thus realizing a one-dimensional Bose-Hubbard model with tunable hopping range and on-site interaction. Using individual site control and readout, we characterize the statistics of measurement outcomes from many-body quench dynamics, which enables in situ Hamiltonian learning. Further, the outcome statistics reveal the effect of increased hopping range, showing the predicted crossover from integrability to ergodicity. Our work enables the study of emergent randomness from chaotic many-body evolution and, more broadly, expands the accessible Hamiltonians for quantum simulation using superconducting circuits.
引用
收藏
页码:278 / 283
页数:6
相关论文
共 50 条
  • [41] Ultra-high-reflectivity photonic-bandgap mirrors in a ridge SOI waveguide
    Velha, P.
    Rodier, J. C.
    Lalanne, P.
    Hugonin, J. P.
    Peyrade, D.
    Picard, E.
    Charvolin, T.
    Hadji, E.
    NEW JOURNAL OF PHYSICS, 2006, 8
  • [42] Fiber-optic nanorefractometer based on one-dimensional photonic-bandgap structures with two defects
    Del Villar, I
    Matías, IR
    Arregui, FJ
    Claus, RO
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2004, 3 (02) : 293 - 299
  • [43] Diamond-Structured Titania Photonic-Bandgap Crystals from Biological Templates
    Galusha, Jeremy W.
    Jorgensen, Matthew R.
    Bartl, Michael H.
    ADVANCED MATERIALS, 2010, 22 (01) : 107 - +
  • [44] Analytical demonstration of omnidirectional transmission enhancement in dispersive birefringent photonic-bandgap structures
    Mandatori, A
    Sibilia, C
    Bertolotti, M
    Zhukovsky, S
    Gaponenko, SV
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2005, 22 (08) : 1785 - 1792
  • [45] Improving fiber optic gyroscope performance using a laser and photonic-bandgap fiber
    Lloyd, Seth
    Fan, Shanhui
    Digonnet, Michel J. F.
    22ND INTERNATIONAL CONFERENCE ON OPTICAL FIBER SENSORS, PTS 1-3, 2012, 8421
  • [46] Modeling of the Propagation Loss and Backscattering in Air-Core Photonic-Bandgap Fibers
    Dangui, Vinayak
    Digonnet, Michel J. F.
    Kino, Gordon S.
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2009, 27 (17) : 3783 - 3789
  • [47] A fast and accurate numerical tool to model the modal properties of photonic-bandgap fibers
    Dangui, V
    Digonnet, MJF
    Kino, GS
    OPTICS EXPRESS, 2006, 14 (07): : 2979 - 2993
  • [48] Designing air-core photonic-bandgap fibers free of surface modes
    Kim, HK
    Shin, J
    Fan, SH
    Digonnet, MJF
    Kino, GS
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 2004, 40 (05) : 551 - 556
  • [49] Tunable high-Q photonic-bandgap Fabry-Perot resonator
    Wu, JH
    Ang, LK
    Liu, AQ
    Teo, HG
    Lu, C
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2005, 22 (08) : 1770 - 1777
  • [50] Terahertz Dipole Antenna Performance Enhancement Using A Photonic-Bandgap GaAs Substrate
    Yin, Wenfei
    Khamas, Salam K.
    Hogg, Richard A.
    2014 8TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION (EUCAP), 2014, : 1015 - +