A superconducting quantum simulator based on a photonic-bandgap metamaterial

被引:51
|
作者
Zhang, Xueyue [1 ,2 ,3 ]
Kim, Eunjong [1 ,2 ,3 ]
Mark, Daniel K. [4 ]
Choi, Soonwon [4 ]
Painter, Oskar [1 ,2 ,3 ,5 ]
机构
[1] CALTECH, Thomas J Watson Sr Lab Appl Phys, Pasadena, CA 91125 USA
[2] CALTECH, Kavli Nanosci Inst, Pasadena, CA 91125 USA
[3] CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
[4] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA
[5] AWS Ctr Quantum Comp, Pasadena, CA 91125 USA
关键词
RANGE INTERACTIONS; ENTANGLEMENT; PROPAGATION; PHASES;
D O I
10.1126/science.ade7651
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Synthesizing many-body quantum systems with various ranges of interactions facilitates the study of quantum chaotic dynamics. Such extended interaction range can be enabled by using nonlocal degrees of freedom such as photonic modes in an otherwise locally connected structure. Here, we present a superconducting quantum simulator in which qubits are connected through an extensible photonic-bandgap metamaterial, thus realizing a one-dimensional Bose-Hubbard model with tunable hopping range and on-site interaction. Using individual site control and readout, we characterize the statistics of measurement outcomes from many-body quench dynamics, which enables in situ Hamiltonian learning. Further, the outcome statistics reveal the effect of increased hopping range, showing the predicted crossover from integrability to ergodicity. Our work enables the study of emergent randomness from chaotic many-body evolution and, more broadly, expands the accessible Hamiltonians for quantum simulation using superconducting circuits.
引用
收藏
页码:278 / 283
页数:6
相关论文
共 50 条
  • [21] Self-assembly of block copolymers for photonic-bandgap materials
    Yoon, J
    Lee, W
    Thomas, EL
    MRS BULLETIN, 2005, 30 (10) : 721 - 726
  • [22] Uniplanar one-dimensional photonic-bandgap structures and resonators
    Yun, TY
    Chang, K
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2001, 49 (03) : 549 - 553
  • [23] Self-Assembly of Block Copolymers for Photonic-Bandgap Materials
    Jongseung Yoon
    Wonmok Lee
    Edwin L. Thomas
    MRS Bulletin, 2005, 30 : 721 - 726
  • [24] Avoided-crossing-based liquid-crystal photonic-bandgap notch filter
    Noordegraaf, Danny
    Scolari, Lara
    Laegsgaard, Jesper
    Alkeskjold, Thomas Tanggaard
    Tartarini, Giovanni
    Borelli, Elena
    Bassi, Paolo
    Li, Jun
    Wu, Shin-Tson
    OPTICS LETTERS, 2008, 33 (09) : 986 - 988
  • [25] Sensitivity analysis of a fiber ring resonator based on an air-core photonic-bandgap fiber
    Ying, Diqing
    Demokan, M. S.
    Zhang, Xinlu
    Jin, Wei
    OPTICAL FIBER TECHNOLOGY, 2010, 16 (04) : 217 - 221
  • [26] Hollow-Core Photonic-Bandgap Fiber Resonator for Rotation Sensing
    Fsaifes, I.
    Feugnet, G.
    Baz, A.
    Ravaille, A.
    Debord, B.
    Gerome, F.
    Humbert, G.
    Schwartz, S.
    Benabid, F.
    Bretenaker, F.
    2016 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2016,
  • [27] Spatially and temporally resolved imaging of modal content in photonic-bandgap fiber
    Carpenter, Joel
    Eggleton, Benjamin J.
    Schroeder, Jochen
    2014 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2014,
  • [28] Air-core photonic-bandgap fiber-optic gyroscope
    Kim, Hyang Kyun
    Digonnet, Michel J. F.
    Kino, Gordon S.
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2006, 24 (08) : 3169 - 3174
  • [29] Classification of the Core Modes of Hollow-Core Photonic-Bandgap Fibers
    Aghaie, Kiarash Zamani
    Dangui, Vinayak
    Digonnet, Michel J. F.
    Fan, Shanhui
    Kino, Gordon S.
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 2009, 45 (09) : 1192 - 1200
  • [30] Investigations into nonuniform photonic-bandgap microstripline low-pass filters
    Karmakar, NC
    Mollah, MN
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2003, 51 (02) : 564 - 572