HYPERGRAPHS WITH NO TIGHT CYCLES

被引:7
|
作者
Letzter, Shoham [1 ]
机构
[1] UCL, Dept Math, Gower St, London WC1E 6BT, England
关键词
D O I
10.1090/proc/16043
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that every r-uniform hypergraph on n vertices which does not contain a tight cycle has at most O(nr-1(log n)5) edges. This is an improvement on the previously best-known bound, of nr-1eO(root log n), due to Sudakov and Tomon, and our proof builds on their work. A recent construction of B. Janzer implies that our bound is tight up to an O((log n)4 log log n) factor.
引用
下载
收藏
页码:455 / 462
页数:8
相关论文
共 50 条
  • [41] CYCLES IN RANDOM GRAPHS AND HYPERGRAPHS
    KOLCHIN, VF
    ADVANCES IN APPLIED PROBABILITY, 1992, 24 (04) : 768 - 768
  • [42] HYPERGRAPHS WITHOUT SIGNIFICANT CYCLES
    LEWIN, M
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1976, 20 (01) : 80 - 83
  • [43] On extremal hypergraphs for forests of tight paths
    Gu, Ran
    Li, Rui
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 325 : 291 - 296
  • [44] Monochromatic Hamiltonian 3-Tight Berge Cycles in 2-Colored 4-Uniform Hypergraphs
    Gyarfas, Andras
    Sarkozy, Gabor N.
    Szemerdi, Endre
    JOURNAL OF GRAPH THEORY, 2010, 63 (04) : 288 - 299
  • [45] On offset Hamilton cycles in random hypergraphs
    Dudek, Andrzej
    Helenius, Laars
    DISCRETE APPLIED MATHEMATICS, 2018, 238 : 77 - 85
  • [46] Forbidding Hamilton cycles in uniform hypergraphs
    Han, Jie
    Zhao, Yi
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2016, 143 : 107 - 115
  • [47] Counting Hamilton Cycles in Dirac Hypergraphs
    Asaf Ferber
    Liam Hardiman
    Adva Mond
    Combinatorica, 2023, 43 : 665 - 680
  • [48] HYPERGRAPHS NOT CONTAINING A TIGHT TREE WITH A BOUNDED TRUNK
    Furedi, Zoltan
    Jiang, Tao
    Kostochka, Alexandr
    Mubayi, Dhruv
    Verstraete, Jacques
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2019, 33 (02) : 862 - 873
  • [49] Hamiltonian Berge cycles in random hypergraphs
    Bal, Deepak
    Berkowitz, Ross
    Devlin, Pat
    Schacht, Mathias
    COMBINATORICS PROBABILITY & COMPUTING, 2021, 30 (02): : 228 - 238
  • [50] The number of hypergraphs without linear cycles
    Balogh, Jozsef
    Narayanan, Bhargav
    Skokan, Jozef
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2019, 134 : 309 - 321