We show that every r-uniform hypergraph on n vertices which does not contain a tight cycle has at most O(nr-1(log n)5) edges. This is an improvement on the previously best-known bound, of nr-1eO(root log n), due to Sudakov and Tomon, and our proof builds on their work. A recent construction of B. Janzer implies that our bound is tight up to an O((log n)4 log log n) factor.
机构:
Hungarian Acad Sci, Alfred Renyi Inst Math, Realtanoda Utca 13-15, H-1053 Budapest, HungaryHungarian Acad Sci, Alfred Renyi Inst Math, Realtanoda Utca 13-15, H-1053 Budapest, Hungary
Furedi, Zoltan
Jiang, Tao
论文数: 0引用数: 0
h-index: 0
机构:
Miami Univ, Dept Math, Oxford, OH 45056 USAHungarian Acad Sci, Alfred Renyi Inst Math, Realtanoda Utca 13-15, H-1053 Budapest, Hungary
Jiang, Tao
Kostochka, Alexandr
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Urbana, IL 61801 USA
Sobolev Inst Math, Novosibirsk 630090, RussiaHungarian Acad Sci, Alfred Renyi Inst Math, Realtanoda Utca 13-15, H-1053 Budapest, Hungary
Kostochka, Alexandr
Mubayi, Dhruv
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Dept Math Stat & Comp Sci, Chicago, IL 60607 USAHungarian Acad Sci, Alfred Renyi Inst Math, Realtanoda Utca 13-15, H-1053 Budapest, Hungary
Mubayi, Dhruv
Verstraete, Jacques
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USAHungarian Acad Sci, Alfred Renyi Inst Math, Realtanoda Utca 13-15, H-1053 Budapest, Hungary
机构:
Univ Illinois, Dept Math, 1409 W Green St, Urbana, IL 61801 USAUniv Illinois, Dept Math, 1409 W Green St, Urbana, IL 61801 USA
Balogh, Jozsef
Narayanan, Bhargav
论文数: 0引用数: 0
h-index: 0
机构:
Rutgers State Univ, Dept Math, 110 Frelinghuysen Rd, Piscataway, NJ 08854 USAUniv Illinois, Dept Math, 1409 W Green St, Urbana, IL 61801 USA
Narayanan, Bhargav
Skokan, Jozef
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Dept Math, 1409 W Green St, Urbana, IL 61801 USA
London Sch Econ, Dept Math, Houghton St, London WC2A 2AE, EnglandUniv Illinois, Dept Math, 1409 W Green St, Urbana, IL 61801 USA