HYPERGRAPHS WITH NO TIGHT CYCLES

被引:7
|
作者
Letzter, Shoham [1 ]
机构
[1] UCL, Dept Math, Gower St, London WC1E 6BT, England
关键词
D O I
10.1090/proc/16043
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that every r-uniform hypergraph on n vertices which does not contain a tight cycle has at most O(nr-1(log n)5) edges. This is an improvement on the previously best-known bound, of nr-1eO(root log n), due to Sudakov and Tomon, and our proof builds on their work. A recent construction of B. Janzer implies that our bound is tight up to an O((log n)4 log log n) factor.
引用
下载
收藏
页码:455 / 462
页数:8
相关论文
共 50 条
  • [21] Odd cycles and Θ-cycles in hypergraphs
    Gyarfas, Andras
    Jacobson, Michael S.
    Kezdy, Andre E.
    Lehel, Jeno
    DISCRETE MATHEMATICS, 2006, 306 (19-20) : 2481 - 2491
  • [22] MINIMUM PAIR-DEGREE FOR TIGHT HAMILTONIAN CYCLES IN 4-UNIFORM HYPERGRAPHS
    Reiher, C.
    Rodl, V.
    Rucinski, A.
    Schacht, M.
    Schuelke, B.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2019, 88 (03): : 1023 - 1027
  • [23] Minimum vertex degree condition for tight Hamiltonian cycles in 3-uniform hypergraphs
    Reiher, Christian
    Rodl, Vojtech
    Rucinski, Andrzej
    Schacht, Mathias
    Szemeredi, Endre
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2019, 119 (02) : 409 - 439
  • [24] Minimum pair degree condition for tight Hamiltonian cycles in 4-uniform hypergraphs
    J. Polcyn
    Chr. Reiher
    V. Rödl
    A. Ruciński
    M. Schacht
    B. Schülke
    Acta Mathematica Hungarica, 2020, 161 : 647 - 699
  • [25] MINIMUM PAIR DEGREE CONDITION FOR TIGHT HAMILTONIAN CYCLES IN 4-UNIFORM HYPERGRAPHS
    Polcyn, J.
    Reiher, Chr.
    Rodl, V.
    Rucinski, A.
    Schacht, M.
    Schuelke, B.
    ACTA MATHEMATICA HUNGARICA, 2020, 161 (02) : 647 - 699
  • [26] Homology Cycles and Dependent Cycles of Hypergraphs
    Jian-fang WANG
    Xin XU
    Acta Mathematicae Applicatae Sinica, 2018, 34 (02) : 237 - 248
  • [27] Homology Cycles and Dependent Cycles of Hypergraphs
    Jian-fang Wang
    Xin Xu
    Acta Mathematicae Applicatae Sinica, English Series, 2018, 34 : 237 - 248
  • [28] Paths and cycles of hypergraphs
    Jianfang Wang
    Tony T. Lee
    Science in China Series A: Mathematics, 1999, 42 : 1 - 12
  • [29] Paths and cycles of hypergraphs
    Wang, JF
    Lee, TT
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 1999, 42 (01): : 1 - 12
  • [30] Paths and cycles of hypergraphs
    王建方
    Tony T.Lee
    Science China Mathematics, 1999, (01) : 1 - 12