HYPERGRAPHS WITH NO TIGHT CYCLES

被引:7
|
作者
Letzter, Shoham [1 ]
机构
[1] UCL, Dept Math, Gower St, London WC1E 6BT, England
关键词
D O I
10.1090/proc/16043
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that every r-uniform hypergraph on n vertices which does not contain a tight cycle has at most O(nr-1(log n)5) edges. This is an improvement on the previously best-known bound, of nr-1eO(root log n), due to Sudakov and Tomon, and our proof builds on their work. A recent construction of B. Janzer implies that our bound is tight up to an O((log n)4 log log n) factor.
引用
下载
收藏
页码:455 / 462
页数:8
相关论文
共 50 条
  • [1] ON TIGHT CYCLES IN HYPERGRAPHS
    Huang, Hao
    Ma, Jie
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2019, 33 (01) : 230 - 237
  • [2] Covering and tiling hypergraphs with tight cycles
    Han, Jie
    Lo, Allan
    Sanhueza-Matamala, Nicolas
    COMBINATORICS PROBABILITY & COMPUTING, 2021, 30 (02): : 288 - 329
  • [3] Tight Hamilton Cycles in Random Hypergraphs
    Allen, Peter
    Boettcher, Julia
    Kohayakawa, Yoshiharu
    Person, Yury
    RANDOM STRUCTURES & ALGORITHMS, 2015, 46 (03) : 446 - 465
  • [4] Tight Hamilton cycles in random uniform hypergraphs
    Dudek, Andrzej
    Frieze, Alan
    RANDOM STRUCTURES & ALGORITHMS, 2013, 42 (03) : 374 - 385
  • [5] PACKING TIGHT HAMILTON CYCLES IN UNIFORM HYPERGRAPHS
    Bal, Deepak
    Frieze, Alan
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2012, 26 (02) : 435 - 451
  • [6] Tight cycles and regular slices in dense hypergraphs
    Allen, Peter
    Bottcher, Julia
    Cooley, Oliver
    Mycroft, Richard
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2017, 149 : 30 - 100
  • [7] Finding tight Hamilton cycles in random hypergraphs faster
    Allen, Peter
    Koch, Christoph
    Parczyk, Olaf
    Person, Yury
    COMBINATORICS PROBABILITY & COMPUTING, 2021, 30 (02): : 239 - 257
  • [8] Finding Tight Hamilton Cycles in Random Hypergraphs Faster
    Allen, Peter
    Koch, Christoph
    Parczyk, Olaf
    Person, Yury
    LATIN 2018: THEORETICAL INFORMATICS, 2018, 10807 : 28 - 36
  • [9] Powers of tight Hamilton cycles in randomly perturbed hypergraphs
    Bedenknecht, Wiebke
    Han, Jie
    Kohayakawa, Yoshiharu
    Mota, Guilherme O.
    RANDOM STRUCTURES & ALGORITHMS, 2019, 55 (04) : 795 - 807
  • [10] On powers of tight Hamilton cycles in randomly perturbed hypergraphs
    Chang, Yulin
    Han, Jie
    Thoma, Lubos
    RANDOM STRUCTURES & ALGORITHMS, 2023, 63 (03) : 591 - 609