Origin of antiferroelectricity in NaNbO3

被引:2
|
作者
Hadaeghi, Niloofar [1 ]
Dai, Mian [1 ]
Zhang, Yixuan [1 ]
Xie, Ruiwen [1 ]
Nouri, Hamid [1 ]
Zhang, Hongbin [1 ]
机构
[1] Tech Univ Darmstadt, Inst Mat Sci, Otto Berndt Str 3, D-64287 Darmstadt, Germany
关键词
JAHN-TELLER ORIGIN; SODIUM NIOBATE; PHASE-TRANSITIONS; ELECTRICAL-PROPERTIES; SINGLE-CRYSTALS; DEGREES-C; FERROELECTRICITY; 1ST-PRINCIPLES; PEROVSKITES; INSTABILITY;
D O I
10.1103/PhysRevMaterials.8.015004
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The stabilization and origin of antiferroelectricity in the antiferroelectric (AFE) materials have always been the tools to facilitate the AFE/FE engineering. However, the mechanistic understanding of the driving forces, especially in the electronic level, is still elusive. Here, combining density functional theory calculations and symmetry analysis, following the pseudo-Jahn-Teller effect (PJTE) theory, we investigate both the stabilization and origin of antiferroelectricity in the AFE perovskite NaNbO3. Utilizing the potential energy surface and effective Hamiltonian, it is observed that the cooperative couplings play a critical role to stabilize the AFE phase. Moreover, considering adiabatic potential energy surface cross sections at F on the basis of the PJTE, the origin of the cubic-AFE phase transition at F is observed as the coupling of (T-2u, T-2g) electronic states, inducing the A5 mode, whereas both the (T-1u, T-2g) state and (T-2u, T-2g) state couplings via the Gamma(-)(4) mode are the reason behind the cubic to ferroelectric phase transition at Gamma.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Hydrothermal synthesis of submicron NaNbO3 powders
    Song, Huawei
    Ma, Wenhui
    CERAMICS INTERNATIONAL, 2011, 37 (03) : 877 - 882
  • [32] Synthesis of NaNbO3 nanowires and their photocatalytic activity
    Fernandes, Daiane
    Raubach, Cristiane W.
    Jardim, Pedro L. G.
    Moreira, Mario L.
    Cava, Sergio S.
    CERAMICS INTERNATIONAL, 2021, 47 (07) : 10185 - 10188
  • [33] The origin of antiferroelectricity in PbZrO3
    Tagantsev, A. K.
    Vaideeswaran, K.
    Vakhrushev, S. B.
    Filimonov, A. V.
    Burkovsky, R. G.
    Shaganov, A.
    Andronikova, D.
    Rudskoy, A. I.
    Baron, A. Q. R.
    Uchiyama, H.
    Chernyshov, D.
    Bosak, A.
    Ujma, Z.
    Roleder, K.
    Majchrowski, A.
    Ko, J. -H.
    Setter, N.
    NATURE COMMUNICATIONS, 2013, 4
  • [34] NaNbO3/MoS2 and NaNbO3/BiVO4 Core-Shell Nanostructures for Photoelectrochemical Hydrogen Generation
    Kumar, Sandeep
    Malik, Tamanna
    Sharma, Deepanshu
    Ganguli, Ashok K.
    ACS APPLIED NANO MATERIALS, 2019, 2 (05) : 2651 - 2662
  • [35] Physical Properties of NaNbO3–A2+TiO3and NaNbO3–A2+Nb2O6Solid Solutions
    L. A. Reznichenko
    N. V. Dergunova
    O. N. Razumovskaya
    L. A. Shilkina
    Inorganic Materials, 2001, 37 : 1302 - 1311
  • [36] Evidence for antipolar displacements in NaNbO3 thin films
    Schneider, Thorsten
    Cardoletti, Juliette
    Ding, Hui
    Zhang, Mao-Hua
    Jiang, Tianshu
    Major, Marton
    Komissinskiy, Philipp
    Molina-Luna, Leopoldo
    Alff, Lambert
    APPLIED PHYSICS LETTERS, 2022, 121 (12)
  • [37] Macroscopic ferroelectricity and piezoelectricity in nanostructured NaNbO3 ceramics
    Chao, Lumen
    Hou, Yudong
    Zheng, Mupeng
    Yue, Yunge
    Zhu, Mankang
    APPLIED PHYSICS LETTERS, 2017, 110 (12)
  • [38] POLAR PROPERTIES INDUCED IN NANBO3 BY MN DOPANT
    MOLAK, A
    FERROELECTRICS, 1988, 80 : 675 - 678
  • [39] High sintering activity NaNbO3 powder synthesis via the polyacrylamide gel method and fabrication of a NaNbO3 ceramic at lower temperature
    Ye, Fen
    Jiang, Xiangping
    Huang, Xiaokun
    Nie, Xin
    Chen, Chao
    Cheng, Hao
    Zeng, Renfen
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2021, 15 : 5833 - 5840
  • [40] Stable antiferroelectricity with incompletely reversible phase transition and low volume-strain contribution in BaZrO3 and CaZrO3 substituted NaNbO3 ceramics
    Zuo, Ruzhong
    Fu, Jian
    Qi, He
    ACTA MATERIALIA, 2018, 161 : 352 - 359