Origin of antiferroelectricity in NaNbO3

被引:2
|
作者
Hadaeghi, Niloofar [1 ]
Dai, Mian [1 ]
Zhang, Yixuan [1 ]
Xie, Ruiwen [1 ]
Nouri, Hamid [1 ]
Zhang, Hongbin [1 ]
机构
[1] Tech Univ Darmstadt, Inst Mat Sci, Otto Berndt Str 3, D-64287 Darmstadt, Germany
关键词
JAHN-TELLER ORIGIN; SODIUM NIOBATE; PHASE-TRANSITIONS; ELECTRICAL-PROPERTIES; SINGLE-CRYSTALS; DEGREES-C; FERROELECTRICITY; 1ST-PRINCIPLES; PEROVSKITES; INSTABILITY;
D O I
10.1103/PhysRevMaterials.8.015004
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The stabilization and origin of antiferroelectricity in the antiferroelectric (AFE) materials have always been the tools to facilitate the AFE/FE engineering. However, the mechanistic understanding of the driving forces, especially in the electronic level, is still elusive. Here, combining density functional theory calculations and symmetry analysis, following the pseudo-Jahn-Teller effect (PJTE) theory, we investigate both the stabilization and origin of antiferroelectricity in the AFE perovskite NaNbO3. Utilizing the potential energy surface and effective Hamiltonian, it is observed that the cooperative couplings play a critical role to stabilize the AFE phase. Moreover, considering adiabatic potential energy surface cross sections at F on the basis of the PJTE, the origin of the cubic-AFE phase transition at F is observed as the coupling of (T-2u, T-2g) electronic states, inducing the A5 mode, whereas both the (T-1u, T-2g) state and (T-2u, T-2g) state couplings via the Gamma(-)(4) mode are the reason behind the cubic to ferroelectric phase transition at Gamma.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Dominant {100} facet selectivity for enhanced photocatalytic activity of NaNbO3 in NaNbO3/CdS core/shell heterostructures
    Kumar, Sandeep
    Parthasarathy, R.
    Singh, Aadesh P.
    Wickman, Bjorn
    Thirumal, Meganathan
    Ganguli, Ashok K.
    CATALYSIS SCIENCE & TECHNOLOGY, 2017, 7 (02) : 481 - 495
  • [22] Control of polymorphism in NaNbO3 by hydrothermal synthesis
    Modeshia, Deena R.
    Darton, Richard J.
    Ashbrook, Sharon E.
    Walton, Richard I.
    CHEMICAL COMMUNICATIONS, 2009, (01) : 68 - 70
  • [23] Translational Antiphase Boundaries in NaNbO3 Antiferroelectrics
    Ding, Hui
    Hadaeghi, Niloofar
    Zhang, Mao-Hua
    Jiang, Tian-Shu
    Zintler, Alexander
    Carstensen, Leif
    Zhang, Yi-xuan
    Kleebe, Hans-Joachim
    Zhang, Hong-bin
    Molina-Luna, Leopoldo
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (51) : 59964 - 59972
  • [24] Pressure Induced Phase Transition in NaNbO3
    Mishra, S. K.
    Mittal, R.
    Chaplot, S. L.
    Hansen, Thomas
    SOLID STATE PHYSICS, VOL 57, 2013, 1512 : 50 - 51
  • [25] Hydrothermal synthesis and electrical properties of NaNbO3
    Boukriba, M.
    Sediri, F.
    Gharbi, N.
    MATERIALS RESEARCH BULLETIN, 2013, 48 (02) : 574 - 580
  • [26] MN2+ EPR IN NANBO3
    GEIFMAN, IN
    GRACHEV, VG
    KRULIKOVSKII, BK
    FIZIKA TVERDOGO TELA, 1975, 17 (06): : 1862 - 1864
  • [27] Photocatalytic Activity of NaNbO3 Thin Films
    Katsumata, Ken-ichi
    Cordonier, Christopher E. J.
    Shichi, Tetsuya
    Fujishima, Akira
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (11) : 3856 - +
  • [28] Photocatalytic activity of naNbO3 thin films
    Katsumata, Ken-Ichi
    Cordonier, Christopher E. J.
    Shichi, Tetsuya
    Fujishima, Akira
    Journal of the American Chemical Society, 2009, 131 (11): : 3856 - 3857
  • [29] SOFT MODES AND SUPERLATTICE STRUCTURES IN NANBO3
    ISHIDA, K
    HONJO, G
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1973, 34 (05) : 1279 - 1288
  • [30] Noncentrosymmetric phase of submicron NaNbO3 crystallites
    Shiratori, Y.
    Magrez, A.
    Kasezawa, K.
    Kato, M.
    Rohrig, S.
    Peter, F.
    Pithan, C.
    Waser, R.
    JOURNAL OF ELECTROCERAMICS, 2007, 19 (04) : 273 - 280