Fractal Newton Methods

被引:2
|
作者
Akgul, Ali [1 ,2 ,3 ]
Grow, David [4 ]
机构
[1] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut 11022801, Lebanon
[2] Siirt Univ, Art & Sci Fac, Dept Math, TR-56100 Siirt, Turkiye
[3] Near East Univ, Math Res Ctr, Dept Math, Near East Blvd, TR-99138 Nicosia, Turkiye
[4] Missouri Univ Sci & Technol, Dept Math & Stat, Rolla, MO 65409 USA
关键词
fractal derivative; fractal Newton methods; POLYNOMIALS; ROOTS;
D O I
10.3390/math11102277
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce fractal Newton methods for solving f(x)=0 that generalize and improve the classical Newton method. We compare the theoretical efficacy of the classical and fractal Newton methods and illustrate the theory with examples.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Inexact Newton methods for model simulation
    Bellavia, Stefania
    Magheri, Silvia
    Miani, Claudia
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2011, 88 (14) : 2969 - 2987
  • [42] Newton Methods for Quasidifferentiable Equations and Their Convergence
    Y. Gao
    Journal of Optimization Theory and Applications, 2006, 131 : 417 - 428
  • [43] ON THE DISCRETIZATION OF NEWTON-LIKE METHODS
    ARGYROS, IK
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1994, 52 (3-4) : 161 - 170
  • [44] A classification of quasi-Newton methods
    Brezinski, C
    NUMERICAL ALGORITHMS, 2003, 33 (1-4) : 123 - 135
  • [45] APPROXIMATE QUASI-NEWTON METHODS
    KELLEY, CT
    SACHS, EW
    MATHEMATICAL PROGRAMMING, 1990, 48 (01) : 41 - 70
  • [46] Sub-sampled Newton methods
    Farbod Roosta-Khorasani
    Michael W. Mahoney
    Mathematical Programming, 2019, 174 : 293 - 326
  • [47] GNMF with Newton-Based Methods
    Zdunek, Rafal
    Anh-Huy Phan
    Cichocki, Andrzej
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2013, 2013, 8131 : 90 - 97
  • [48] ON SEMILOCAL CONVERGENCE OF INEXACT NEWTON METHODS
    Xueping Guo (Department of Mathematics
    JournalofComputationalMathematics, 2007, (02) : 231 - 242
  • [49] Sub-sampled Newton methods
    Roosta-Khorasani, Farbod
    Mahoney, Michael W.
    MATHEMATICAL PROGRAMMING, 2019, 174 (1-2) : 293 - 326
  • [50] Two-step Newton methods
    Magrenan Ruiz, Angel Alberto
    Argyros, Ioannis K.
    JOURNAL OF COMPLEXITY, 2014, 30 (04) : 533 - 553