Fractal Newton Methods

被引:2
|
作者
Akgul, Ali [1 ,2 ,3 ]
Grow, David [4 ]
机构
[1] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut 11022801, Lebanon
[2] Siirt Univ, Art & Sci Fac, Dept Math, TR-56100 Siirt, Turkiye
[3] Near East Univ, Math Res Ctr, Dept Math, Near East Blvd, TR-99138 Nicosia, Turkiye
[4] Missouri Univ Sci & Technol, Dept Math & Stat, Rolla, MO 65409 USA
关键词
fractal derivative; fractal Newton methods; POLYNOMIALS; ROOTS;
D O I
10.3390/math11102277
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce fractal Newton methods for solving f(x)=0 that generalize and improve the classical Newton method. We compare the theoretical efficacy of the classical and fractal Newton methods and illustrate the theory with examples.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Newton methods with Holder derivative
    Ahues, M
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2004, 25 (5-6) : 379 - 395
  • [22] FRACTAL METHODS IN PHYSICS
    Sekovanov, Valerii
    Seleznjova, Elena
    Shljahtina, Svetlana
    MATHEMATICS AND INFORMATICS, 2014, 57 (02): : 129 - 138
  • [23] Inexact Newton dogleg methods
    Pawlowski, Roger P.
    Simonis, Joseph P.
    Walker, Homer F.
    Shadid, John N.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (04) : 2112 - 2132
  • [24] Approximations and generalized Newton methods
    Klatte, Diethard
    Kummer, Bernd
    MATHEMATICAL PROGRAMMING, 2018, 168 (1-2) : 673 - 716
  • [25] Modified Quaternion Newton Methods
    Miranda, Fernando
    Falcao, M. Irene
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2014, PT 1, 2014, 8579 : 146 - 161
  • [26] Newton design:designing CNNs with the family of Newton's methods
    Zhengyang SHEN
    Yibo YANG
    Qi SHE
    Changhu WANG
    Jinwen MA
    Zhouchen LIN
    Science China(Information Sciences), 2023, (06) : 122 - 137
  • [27] Newton design: designing CNNs with the family of Newton's methods
    Shen, Zhengyang
    Yang, Yibo
    She, Qi
    Wang, Changhu
    Ma, Jinwen
    Lin, Zhouchen
    SCIENCE CHINA-INFORMATION SCIENCES, 2023, 66 (06)
  • [28] CONVERGENCE THEOREMS FOR NEWTON'S AND MODIFIED NEWTON'S METHODS
    Argyros, Ioannis K.
    JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2009, 16 (04): : 405 - 416
  • [29] The Newton Fractal's Leonardo Sequence Study with the Google Colab
    Vieira Alves, Francisco Regis
    Machado Vieira, Renata Passos
    INTERNATIONAL ELECTRONIC JOURNAL OF MATHEMATICS EDUCATION, 2020, 15 (02)
  • [30] Fractal basins of attraction associated with a damped Newton's method
    Epureanu, BI
    Greenside, HS
    SIAM REVIEW, 1998, 40 (01) : 102 - 109