Anomaly Detection Dataset for Industrial Control Systems

被引:6
|
作者
Dehlaghi-Ghadim, Alireza [1 ,2 ]
Moghadam, Mahshid Helali [2 ]
Balador, Ali [2 ]
Hansson, Hans [1 ,2 ]
机构
[1] RISE Res Inst, S-50115 Pitea, Sweden
[2] Malardalen Univ, Sch Innovat Design & Engn, S-72123 Vasteras, Sweden
基金
欧盟地平线“2020”;
关键词
Anomaly detection dataset; industrial control system; intrusion detection; cyberattack; network flow; artificial intelligence; IOT;
D O I
10.1109/ACCESS.2023.3320928
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Over the past few decades, Industrial Control Systems (ICS) have been targeted by cyberattacks and are becoming increasingly vulnerable as more ICSs are connected to the internet. Using Machine Learning (ML) for Intrusion Detection Systems (IDS) is a promising approach for ICS cyber protection, but the lack of suitable datasets for evaluating ML algorithms is a challenge. Although a few commonly used datasets may not reflect realistic ICS network data, lack necessary features for effective anomaly detection, or be outdated. This paper introduces the 'ICS-Flow' dataset, which offers network data and process state variables logs for supervised and unsupervised ML-based IDS assessment. The network data includes normal and anomalous network packets and flows captured from simulated ICS components and emulated networks, where the anomalies were applied to the system through various cyberattacks. We also proposed an open-source tool, "ICSFlowGenerator," for generating network flow parameters from Raw network packets. The final dataset comprises over 25,000,000 raw network packets, network flow records, and process variable logs. The paper describes the methodology used to collect and label the dataset and provides a detailed data analysis. Finally, we implement several ML models, including the decision tree, random forest, and artificial neural network to detect anomalies and attacks, demonstrating that our dataset can be used effectively for training intrusion detection ML models.
引用
收藏
页码:107982 / 107996
页数:15
相关论文
共 50 条
  • [31] Assessing Anomaly-Based Intrusion Detection Configurations for Industrial Control Systems
    Gillen, Robert E.
    Carter, Jason M.
    Craig, Christopher
    Johnson, Jordan A.
    Scott, Stephen L.
    2020 21ST IEEE INTERNATIONAL SYMPOSIUM ON A WORLD OF WIRELESS, MOBILE AND MULTIMEDIA NETWORKS (IEEE WOWMOM 2020), 2020, : 360 - 366
  • [32] Self-similarity based network anomaly detection for industrial control systems
    Martin, Bryan
    Bollmann, Chad A.
    2023 IEEE CONFERENCE ON COMMUNICATIONS AND NETWORK SECURITY, CNS, 2023,
  • [33] An improved autoencoder-based approach for anomaly detection in industrial control systems
    Aslam, Muhammad Muzamil
    Tufail, Ali
    De Silva, Liyanage Chandratilak
    Haji Mohd Apong, Rosyzie Anna Awg
    Namoun, Abdallah
    SYSTEMS SCIENCE & CONTROL ENGINEERING, 2024, 12 (01)
  • [34] Federated Learning-Based Explainable Anomaly Detection for Industrial Control Systems
    Huong, Truong Thu
    Bac, Ta Phuong
    Ha, Kieu Ngan
    Hoang, Nguyen Viet
    Hoang, Nguyen Xuan
    Hung, Nguyen Tai
    Tran, Kim Phuc
    IEEE ACCESS, 2022, 10 : 53854 - 53872
  • [35] Dynamic Data Abstraction-Based Anomaly Detection for Industrial Control Systems
    Cho, Jake
    Gong, Seonghyeon
    ELECTRONICS, 2024, 13 (01)
  • [36] Intrusion and anomaly detection for the next-generation of industrial automation and control systems
    Rosa, Luis
    Cruz, Tiago
    de Freitas, Miguel Borges
    Quiterio, Pedro
    Henriques, Joao
    Caldeira, Filipe
    Monteiro, Edmundo
    Simoes, Paulo
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2021, 119 : 50 - 67
  • [37] A Comparative Study of Time Series Anomaly Detection Models for Industrial Control Systems
    Kim, Bedeuro
    Alawami, Mohsen Ali
    Kim, Eunsoo
    Oh, Sanghak
    Park, Jeongyong
    Kim, Hyoungshick
    SENSORS, 2023, 23 (03)
  • [38] AADS: A Noise-Robust Anomaly Detection Framework for Industrial Control Systems
    Abdelaty, Maged
    Doriguzzi-Corin, Roberto
    Siracusa, Domenico
    INFORMATION AND COMMUNICATIONS SECURITY (ICICS 2019), 2020, 11999 : 53 - 70
  • [39] A real-time network based anomaly detection in industrial control systems
    Zare, Faeze
    Mahmoudi-Nasr, Payam
    Yousefpour, Rohollah
    INTERNATIONAL JOURNAL OF CRITICAL INFRASTRUCTURE PROTECTION, 2024, 45
  • [40] INDUSTRIAL CONTROL SYSTEM FINGERPRINTING AND ANOMALY DETECTION
    Peng, Yong
    Xiang, Chong
    Gao, Haihui
    Chen, Dongqing
    Ren, Wang
    CRITICAL INFRASTRUCTURE PROTECTION IX, 2015, 466 : 73 - 85