Federated Learning-Based Explainable Anomaly Detection for Industrial Control Systems

被引:30
|
作者
Huong, Truong Thu [1 ]
Bac, Ta Phuong [2 ]
Ha, Kieu Ngan [1 ]
Hoang, Nguyen Viet [1 ]
Hoang, Nguyen Xuan [1 ]
Hung, Nguyen Tai [1 ]
Tran, Kim Phuc [3 ]
机构
[1] Hanoi Univ Sci & Technol, Sch Elect & Elect Engn, Hanoi 100000, Hai Ba Trung, Vietnam
[2] Soongsil Univ, Sch Elect Engn, Seoul 06978, South Korea
[3] Univ Lille, Natl Higher Sch Arts & Text Ind ENSAIT, Genie & Mat Text GEMTEX, F-59000 Lille, France
来源
IEEE ACCESS | 2022年 / 10卷
关键词
Anomaly detection; Integrated circuits; Training; Industrial Internet of Things; Computational modeling; Support vector machines; Edge computing; ICS; federated learning; XAI; VAE; SVDD; CYBERATTACKS;
D O I
10.1109/ACCESS.2022.3173288
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We are now witnessing the rapid growth of advanced technologies and their application, leading to Smart Manufacturing (SM). The Internet of Things (IoT) is one of the main technologies used to enable smart factories, which is connecting all industrial assets, including machines and control systems, with the information systems and the business processes. Industrial Control Systems of smart IoT-based factories are one of the top industries attacked by numerous threats, especially unknown and novel attacks. As a result, with the distributed structure of plenty of IoT front-end sensing devices in SM, an effectively distributed anomaly detection (AD) architecture for IoT-based ICSs should: achieve high detection performance, train and learn new data patterns in a fast time scale, and have lightweight to be deployed on resource-constrained edge devices. To date, most solutions for anomaly detection have not fulfilled all of these requirements. In addition, the interpretability of why an instance is predicted to be abnormal is hardly concerned. In this paper, we propose the so- called FedeX architecture to address those challenges. The experiments show that FedeX outperforms 14 other existing anomaly detection solutions on all detection metrics with the liquid storage data set. And with Recall of 1 and F1-score of 0.9857, it also outperforms those solutions on the SWAT data set. FedeX is also proven to be fast in terms of training time of about 7.5 minutes and lightweight in terms of hardware requirement with memory consumption of 14%, allowing us to deploy anomaly detection tasks on top of edge computing infrastructure and in real-time. Besides, FedeX is considered as one of the frameworks at the forefront of interpreting the predicted anomalies by using XAI, which enables experts to make quick decisions and trust the model more.
引用
收藏
页码:53854 / 53872
页数:19
相关论文
共 50 条
  • [1] Light-weight federated learning-based anomaly detection for time-series data in industrial control systems
    Truong, Huong Thu
    Ta, Bac Phuong
    Le, Quang Anh
    Nguyen, Dan Minh
    Le, Cong Thanh
    Nguyen, Hoang Xuan
    Do, Ha Thu
    Nguyen, Hung Tai
    Tran, Kim Phuc
    COMPUTERS IN INDUSTRY, 2022, 140
  • [2] Explainable correlation-based anomaly detection for Industrial Control Systems
    Birihanu, Ermiyas
    Lendak, Imre
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2025, 7
  • [3] Deep Federated Learning-Based Cyber-Attack Detection in Industrial Control Systems
    Jahromi, Amir Namavar
    Karimipour, Hadis
    Dehghantanha, Ali
    2021 18TH INTERNATIONAL CONFERENCE ON PRIVACY, SECURITY AND TRUST (PST), 2021,
  • [4] Deep Learning-based Multi-PLC Anomaly Detection in Industrial Control Systems
    Gawehn, Philip
    Ergenc, Doganalp
    Fischer, Mathias
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 4878 - 4884
  • [5] Comprehensive Analysis over Centralized and Federated Learning-based Anomaly Detection in Networks with Explainable AI (XAI)
    Rumesh, Yasintha
    Senevirathna, Thulitha Theekshana
    Porambage, Pawani
    Liyanage, Madhusanka
    Ylianttila, Mika
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 4853 - 4859
  • [6] WaXAI: Explainable Anomaly Detection in Industrial Control Systems and Water Systems
    Mathuros, Kornkamon
    Venugopalan, Sarad
    Adepu, Sridhar
    PROCEEDINGS OF THE 10TH ACM CYBER-PHYSICAL SYSTEM SECURITY WORKSHOP, ACM CPSS 2024, 2024, : 3 - 15
  • [7] Federated Learning-Driven Decentralized Intelligence for Explainable Anomaly Detection in Industrial Operations
    Marry, Prabhakar
    Mounika, Y.
    Nanditha, S.
    Shiva, R.
    Saikishore, R.
    2ND INTERNATIONAL CONFERENCE ON SUSTAINABLE COMPUTING AND SMART SYSTEMS, ICSCSS 2024, 2024, : 874 - 880
  • [8] Detecting cyberattacks using anomaly detection in industrial control systems: A Federated Learning approach
    Huong, Truong Thu
    Bac, Ta Phuong
    Long, Dao Minh
    Luong, Tran Duc
    Dan, Nguyen Minh
    Quang, Le Anh
    Cong, Le Thanh
    Thang, Bui Doan
    Tran, Kim Phuc
    COMPUTERS IN INDUSTRY, 2021, 132 (132)
  • [9] Anomaly Detection of Industrial Control Systems Based on Transfer Learning
    Wang, Weiping
    Wang, Zhaorong
    Zhou, Zhanfan
    Deng, Haixia
    Zhao, Weiliang
    Wang, Chunyang
    Guo, Yongzhen
    TSINGHUA SCIENCE AND TECHNOLOGY, 2021, 26 (06) : 821 - 832
  • [10] Anomaly Detection of Industrial Control Systems Based on Transfer Learning
    Weiping Wang
    Zhaorong Wang
    Zhanfan Zhou
    Haixia Deng
    Weiliang Zhao
    Chunyang Wang
    Yongzhen Guo
    TsinghuaScienceandTechnology, 2021, 26 (06) : 821 - 832