Exploring the potential of liquid organic hydrogen carrier (LOHC) system for efficient hydrogen storage and Transport: A Techno-Economic and energy analysis perspective

被引:25
|
作者
Tsogt, Nomuunaa [1 ]
Gbadago, Dela Quarme [1 ]
Hwang, Sungwon [1 ,2 ]
机构
[1] Inha Univ, Grad Sch Chem & Chem Engn, Incheon, South Korea
[2] Inha Univ, Dept Smart Digital Engn, Incheon, South Korea
基金
新加坡国家研究基金会;
关键词
LOHC; Hydrogen storage; Process Design; Techno-economic analysis; Net energy analysis; N-PROPYLCARBAZOLE; CHALLENGES; GENERATION; KINETICS; CATALYST; RELEASE; DESIGN;
D O I
10.1016/j.enconman.2023.117856
中图分类号
O414.1 [热力学];
学科分类号
摘要
Despite its potential as an environmentally clean fuel and energy source, hydrogen storage and utilization has been significantly hampered by its extremely low volumetric density (0.08988 g/L at 1 atm), making it inefficient to store and transport. Therefore, liquid organic hydrogen carrier (LOHC) systems are being recently investigated as potential alternatives for hydrogen storage and transport. However, as a budding research area, the selection of a suitable LOHC, its deployment in hydrogen fuel stations, and its economic viability are not well established. Therefore, this study proposes a comprehensive investigation of four different LOHCs [Methylcyclohexane (MCH), Dibenzyltoluene (DBT), N-ethylcarbazole (NEC) and Naphthalene (NAP)] via Aspen HYSYS simulations. The LOHCs were compared and contrasted using their physiochemical properties, techno-economic analysis and heat network integration. The techno-economic analysis revealed that NAP-based hydrogen storage has the lowest cost among the LOHC options, while NEC shows the highest cost. However, when considering the breakeven point, the order changes to DBT, MCH, NAP, and NEC with 3, 3.8, 5.1 and 5.9, respectively. This result is attributed to the different hydrogen uptakes of the LOHCs, resulting in a longer breakeven period for NEC. Internal rate of return and net present value analysis also demonstrated the superior economic feasibility of the proposed systems. In terms of heat integration, the DBT process outperformed the other LOHCs as the most heatefficient process with 80 % utility reduction, while the NEC process exhibited the lowest heat integration potential of 66.7 % utility reduction. Combining these findings with the physiochemical properties of the LOHCs, DBT emerges as the most attractive due to its favorable performance across multiple categories, such as toxicities, prices, energy consumptions, and material handling, using a spiderweb diagram.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] The techno-economic potential of large-scale hydrogen storage in Germany for a climate-neutral energy system
    Kondziella, Hendrik
    Specht, Karl
    Lerch, Philipp
    Scheller, Fabian
    Bruckner, Thomas
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2023, 182
  • [32] Implementation of Formic Acid as a Liquid Organic Hydrogen Carrier (LOHC): Techno-Economic Analysis and Life Cycle Assessment of Formic Acid Produced via CO2 Utilization
    Kim, Changsoo
    Lee, Younggeun
    Kim, Kyeongsu
    Lee, Ung
    CATALYSTS, 2022, 12 (10)
  • [33] Hydrogen Used for Renewable Energy Storage: Techno-Economic Analysis of Different Technology Routes
    Liu, Biao
    Zhu, Xiaohong
    Dang, Jian
    Yu, Yangwanqing
    Li, Yangyang
    Ma, Jugang
    Zhang, Junyu
    Yang, Fuyuan
    Ouyang, Minggao
    PROCEEDINGS OF THE 10TH HYDROGEN TECHNOLOGY CONVENTION, VOL 2, WHTC 2023, 2024, 394 : 269 - 280
  • [34] Techno-economic analysis of green hydrogen as an energy-storage medium for commercial buildings
    Urs, Rahul Rajeevkumar
    Chadly, Assia
    Al Sumaiti, Ameena
    Mayyas, Ahmad
    CLEAN ENERGY, 2023, 7 (01): : 84 - 98
  • [35] Techno-economic analysis of an integrated liquid air and thermochemical energy storage system
    Wu, Sike
    Zhou, Cheng
    Doroodchi, Elham
    Moghtaderi, Behdad
    ENERGY CONVERSION AND MANAGEMENT, 2020, 205
  • [36] Application and Analysis of Liquid Organic Hydrogen Carrier (LOHC) Technology in Practical Projects
    Li, Hanqi
    Zhang, Xi
    Zhang, Chenjun
    Ding, Zhenfeng
    Jin, Xu
    ENERGIES, 2024, 17 (08)
  • [37] Furfuryl alcohol as a potential liquid organic hydrogen carrier (LOHC): Thermochemical and computational study
    Verevkin, Sergey P.
    Siewert, Riko
    Pimerzin, Andrey A.
    FUEL, 2020, 266
  • [38] Techno-economic analysis of hydrogen energy for renewable energy power smoothing
    Kong, Lingguo
    Li, Linagyuan
    Cai, Guowei
    Liu, Chuang
    Ma, Ping
    Bian, Yudong
    Ma, Tao
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (03) : 2847 - 2861
  • [39] Model-Based Analysis of a Liquid Organic Hydrogen Carrier (LOHC) System for the Operation of a Hydrogen-Fired Gas Turbine
    Dennis, Jason
    Bexten, Thomas
    Petersen, Nils
    Wirsum, Manfred
    Preuster, Patrick
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2021, 143 (03):
  • [40] Techno-economic analysis of a stand-alone hybrid renewable energy system with hydrogen production and storage options
    Kalinci, Yildiz
    Hepbasli, Arif
    Dincer, Ibrahim
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (24) : 7652 - 7664