Quasi-triangular pre-Lie bialgebras, factorizable pre-Lie bialgebras and Rota-Baxter pre-Lie algebras

被引:1
|
作者
Wang, You [1 ]
Bai, Chengming [2 ,3 ]
Liu, Jiefeng [4 ]
Sheng, Yunhe [1 ]
机构
[1] Jilin Univ, Dept Math, Changchun 130012, Jilin, Peoples R China
[2] Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
[3] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[4] Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
关键词
Quasi-triangular pre-Lie bialgebra; Factorizable pre-Lie bialgebra; Quadratic Rota-Baxter pre-Lie algebra; Rota-Baxter pre-Lie bialgebra; Matched pair of Rota-Baxter pre-Lie algebras; OPERATORS; BRACKETS; GEOMETRY; EQUATION; KAHLER;
D O I
10.1016/j.geomphys.2024.105146
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, first we introduce the notions of quasi-triangular pre-Lie bialgebras and factorizable pre-Lie bialgebras. A factorizable pre-Lie bialgebra leads to a factorization of the underlying pre-Lie algebra. We show that the symplectic double of a pre-Lie bialgebra naturally enjoys a factorizable pre-Lie bialgebra structure. Then we give the Rota-Baxter characterization of factorizable pre-Lie bialgebras. More precisely, we introduce the notion of quadratic Rota-Baxter pre-Lie algebras and show that there is a one-to-one correspondence between factorizable pre-Lie bialgebras and quadratic Rota-Baxter pre-Lie algebras. Finally, we develop the theories of matched pairs, bialgebras and Manin triples of Rota-Baxter pre-Lie algebras. In particular, a factorizable pre-Lie bialgebra gives rise to a Rota-Baxter pre-Lie bialgebra, and conversely a Rota-Baxter pre-Lie bialgebra gives rise to a factorizable pre-Lie bialgebra structure on the double space. (c) 2024 Elsevier B.V. All rights reserved.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Quasi-pre-Lie bialgebras and twisting of pre-Lie algebras
    Wang, Qi
    Liu, Jiefeng
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024, 23 (10)
  • [2] Rota-Baxter operators on pre-Lie algebras
    Li, Xiuxian
    Hou, Dongping
    Bai, Chengming
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2007, 14 (02) : 269 - 289
  • [3] Rota-Baxter operators on pre-Lie algebras
    Xiuxian Li
    Dongping Hou
    Chengming Bai
    Journal of Nonlinear Mathematical Physics, 2007, 14 (2) : 269 - 289
  • [4] From Rota-Baxter algebras to pre-Lie algebras
    An, Huihui
    Bai, Chengming
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (01)
  • [5] Rota-Baxter Operators on Pre-Lie Superalgebras
    Abdaoui, El-Kadri
    Mabrouk, Sami
    Makhlouf, Abdenacer
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (04) : 1567 - 1606
  • [6] Universal Enveloping Lie Rota-Baxter Algebras of Pre-Lie and Post-Lie Algebras
    Gubarev, V. Yu.
    ALGEBRA AND LOGIC, 2019, 58 (01) : 1 - 14
  • [7] Factorizable Lie Bialgebras, Quadratic Rota-Baxter Lie Algebras and Rota-Baxter Lie Bialgebras
    Lang, Honglei
    Sheng, Yunhe
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 397 (02) : 763 - 791
  • [8] Cohomology and Crossed Modules of Modified Rota-Baxter Pre-Lie Algebras
    Zhu, Fuyang
    Teng, Wen
    MATHEMATICS, 2024, 12 (14)
  • [9] Infinite-dimensional Lie bialgebras via affinization of perm bialgebras and pre-Lie bialgebras
    Lin, Yuanchang
    Zhou, Peng
    Bai, Chengming
    JOURNAL OF ALGEBRA, 2025, 663 : 210 - 258
  • [10] Rota–Baxter Operators on Pre-Lie Superalgebras
    El-Kadri Abdaoui
    Sami Mabrouk
    Abdenacer Makhlouf
    Bulletin of the Malaysian Mathematical Sciences Society, 2019, 42 : 1567 - 1606