Quasi-triangular pre-Lie bialgebras, factorizable pre-Lie bialgebras and Rota-Baxter pre-Lie algebras

被引:1
|
作者
Wang, You [1 ]
Bai, Chengming [2 ,3 ]
Liu, Jiefeng [4 ]
Sheng, Yunhe [1 ]
机构
[1] Jilin Univ, Dept Math, Changchun 130012, Jilin, Peoples R China
[2] Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
[3] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[4] Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
关键词
Quasi-triangular pre-Lie bialgebra; Factorizable pre-Lie bialgebra; Quadratic Rota-Baxter pre-Lie algebra; Rota-Baxter pre-Lie bialgebra; Matched pair of Rota-Baxter pre-Lie algebras; OPERATORS; BRACKETS; GEOMETRY; EQUATION; KAHLER;
D O I
10.1016/j.geomphys.2024.105146
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, first we introduce the notions of quasi-triangular pre-Lie bialgebras and factorizable pre-Lie bialgebras. A factorizable pre-Lie bialgebra leads to a factorization of the underlying pre-Lie algebra. We show that the symplectic double of a pre-Lie bialgebra naturally enjoys a factorizable pre-Lie bialgebra structure. Then we give the Rota-Baxter characterization of factorizable pre-Lie bialgebras. More precisely, we introduce the notion of quadratic Rota-Baxter pre-Lie algebras and show that there is a one-to-one correspondence between factorizable pre-Lie bialgebras and quadratic Rota-Baxter pre-Lie algebras. Finally, we develop the theories of matched pairs, bialgebras and Manin triples of Rota-Baxter pre-Lie algebras. In particular, a factorizable pre-Lie bialgebra gives rise to a Rota-Baxter pre-Lie bialgebra, and conversely a Rota-Baxter pre-Lie bialgebra gives rise to a factorizable pre-Lie bialgebra structure on the double space. (c) 2024 Elsevier B.V. All rights reserved.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Yangians as Pre-Lie and Tridendriform Algebras
    Doikou, Anastasia
    GEOMETRIC METHODS IN PHYSICS XL, WGMP 2022, 2024, : 233 - 250
  • [22] Simple Lie-Solvable Pre-Lie Algebras
    V. N. Zhelyabin
    A. P. Pozhidaev
    U. U. Umirbaev
    Algebra and Logic, 2022, 61 : 160 - 165
  • [23] Pre-Lie Algebras in Positive Characteristic
    Dokas, I.
    JOURNAL OF LIE THEORY, 2013, 23 (04) : 937 - 952
  • [24] A rigidity theorem for pre-Lie algebras
    Livernet, Muriel
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2006, 207 (01) : 1 - 18
  • [25] Nijenhuis operators on pre-Lie algebras
    Wang, Qi
    Sheng, Yunhe
    Bai, Chengming
    Liu, Jiefeng
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2019, 21 (07)
  • [26] Weighted infinitesimal unitary bialgebras of rooted forests, symmetric cocycles and pre-Lie algebras
    Yi Zhang
    Xing Gao
    Yanfeng Luo
    Journal of Algebraic Combinatorics, 2021, 53 : 771 - 803
  • [27] Coherent categorical structures for Lie bialgebras, Manin triples, classical r-matrices and pre-Lie algebras
    Bai, Chengming
    Guo, Li
    Sheng, Yunhe
    FORUM MATHEMATICUM, 2022, 34 (04) : 989 - 1013
  • [28] Weighted infinitesimal unitary bialgebras of rooted forests, symmetric cocycles and pre-Lie algebras
    Zhang, Yi
    Gao, Xing
    Luo, Yanfeng
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2021, 53 (03) : 771 - 803
  • [29] Embedding of Pre-Lie Algebras into Preassociative Algebras
    Gubarev, Vsevolod
    ALGEBRA COLLOQUIUM, 2020, 27 (02) : 299 - 310
  • [30] Free pre-Lie algebras of finite posets
    Ayadi, M.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024, 23 (09)