Cohomology and Crossed Modules of Modified Rota-Baxter Pre-Lie Algebras

被引:0
|
作者
Zhu, Fuyang [1 ]
Teng, Wen [2 ]
机构
[1] Guizhou Normal Univ, Sch Math Sci, Guiyang 550025, Peoples R China
[2] Guizhou Univ Finance & Econ, Sch Math & Stat, Guiyang 550025, Peoples R China
基金
中国国家自然科学基金;
关键词
pre-Lie algebra; modified Rota-Baxter operator; cohomology; deformation; abelian extension; pre-Lie; 2-algebra; crossed module; DEFORMATIONS; OPERATORS;
D O I
10.3390/math12142260
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The goal of the present paper is to provide a cohomology theory and crossed modules of modified Rota-Baxter pre-Lie algebras. We introduce the notion of a modified Rota-Baxter pre-Lie algebra and its bimodule. We define a cohomology of modified Rota-Baxter pre-Lie algebras with coefficients in a suitable bimodule. Furthermore, we study the infinitesimal deformations and abelian extensions of modified Rota-Baxter pre-Lie algebras and relate them with the second cohomology groups. Finally, we investigate skeletal and strict modified Rota-Baxter pre-Lie 2-algebras. We show that skeletal modified Rota-Baxter pre-Lie 2-algebras can be classified into the third cohomology group, and strict modified Rota-Baxter pre-Lie 2-algebras are equivalent to the crossed modules of modified Rota-Baxter pre-Lie algebras.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Rota-Baxter operators on pre-Lie algebras
    Li, Xiuxian
    Hou, Dongping
    Bai, Chengming
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2007, 14 (02) : 269 - 289
  • [2] Rota-Baxter operators on pre-Lie algebras
    Xiuxian Li
    Dongping Hou
    Chengming Bai
    Journal of Nonlinear Mathematical Physics, 2007, 14 (2) : 269 - 289
  • [3] From Rota-Baxter algebras to pre-Lie algebras
    An, Huihui
    Bai, Chengming
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (01)
  • [4] Rota-Baxter Operators on Pre-Lie Superalgebras
    Abdaoui, El-Kadri
    Mabrouk, Sami
    Makhlouf, Abdenacer
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (04) : 1567 - 1606
  • [5] Universal Enveloping Lie Rota-Baxter Algebras of Pre-Lie and Post-Lie Algebras
    Gubarev, V. Yu.
    ALGEBRA AND LOGIC, 2019, 58 (01) : 1 - 14
  • [6] Quasi-triangular pre-Lie bialgebras, factorizable pre-Lie bialgebras and Rota-Baxter pre-Lie algebras
    Wang, You
    Bai, Chengming
    Liu, Jiefeng
    Sheng, Yunhe
    JOURNAL OF GEOMETRY AND PHYSICS, 2024, 199
  • [7] Matching Rota-Baxter algebras, matching dendriform algebras and matching pre-Lie algebras
    Zhang, Yi
    Gao, Xing
    Guo, Li
    JOURNAL OF ALGEBRA, 2020, 552 : 134 - 170
  • [8] Matching Hom-Setting of Rota-Baxter Algebras, Dendriform Algebras, and Pre-Lie Algebras
    Chen, Dan
    Peng, Xiao-Song
    Zargeh, Chia
    Zhang, Yi
    ADVANCES IN MATHEMATICAL PHYSICS, 2020, 2020
  • [9] Factorizable Lie Bialgebras, Quadratic Rota-Baxter Lie Algebras and Rota-Baxter Lie Bialgebras
    Lang, Honglei
    Sheng, Yunhe
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 397 (02) : 763 - 791
  • [10] On Modified Rota-Baxter Hom-Lie Algebras
    Wen TENG
    Journal of Mathematical Research with Applications, 2025, 45 (02) : 163 - 178