Application of a thermal transient subsurface model to a coaxial borehole heat exchanger system

被引:2
|
作者
Abdelhafiz, Mostafa M.
Oppelt, Joachim F. [1 ]
Brenner, Gunther [2 ]
Hegele Jr, Luiz A. [3 ,4 ]
机构
[1] Future Univ Egypt, Fac Engn & Technol, Cairo 11835, Egypt
[2] Tech Univ Clausthal, Drilling Simulator Celle, D-29221 Celle, Germany
[3] Tech Univ Clausthal, ITM, Clausthal Zellerfeld, Germany
[4] Santa Catarina State Univ, Dept Petr Engn, BR-88336275 Balneario, Brazil
来源
关键词
Borehole heat exchanger; Formation modeling; Well bore thermal modeling; Numerical modeling; FINITE-ELEMENT FORMULATION; FLUID TEMPERATURE PROFILES; RESPONSE TESTS; PERFORMANCE; EXTRACTION; RESISTANCE;
D O I
10.1016/j.geoen.2023.211815
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
We present an application of a thermal transient model to a coaxial borehole heat exchanger system. We compare two numerical methods. First, a model with a prescribed formation temperature (PFT); secondly, a method with a modeled formation temperature (MFT). In this comparison, several parameters are analyzed, such as the transient temperature profiles, the heat flux along the wellbore, the overall heat transfer rate, the thermal conductivity of the formation, and the type of flow inside the pipe and annulus - laminar or turbulent. The description of the system by the MFT method is more physically consistent. Then we proceed validating this method against two experimental setups, thereby showing good agreement. We perform a sensitivity analysis to the MFT method, varying the direction of the flow, regular and reversed, and the center tube material, with a high (steel) or low (polyethylene) thermal conductivity. It is shown that the reverse circulation has a better heat extraction, while regular flow performs better in the case of heat injection. For the center tube material, polyethylene shows a better thermal performance when compared to steel.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Transient heat transfer in a U-tube borehole heat exchanger
    Beier, Richard A.
    APPLIED THERMAL ENGINEERING, 2014, 62 (01) : 256 - 266
  • [32] Borehole thermal resistance of U-tube borehole heat exchanger
    Abuel-Naga, H. M.
    Al-Chalabi, R. R.
    GEOTECHNIQUE LETTERS, 2016, 6 (04) : 250 - 255
  • [33] Multipole method to calculate borehole thermal resistances in a borehole heat exchanger
    Claesson, Johan
    Hellstrom, Goran
    HVAC&R RESEARCH, 2011, 17 (06): : 895 - 911
  • [34] Thermal evaluation of coaxial deep borehole heat exchangers
    Holmberg, Henrik
    Acuna, Jose
    Naess, Erling
    Sonju, Otto K.
    RENEWABLE ENERGY, 2016, 97 : 65 - 76
  • [35] Improving the thermal performance of coaxial borehole heat exchangers
    Zanchini, E.
    Lazzari, S.
    Priarone, A.
    ENERGY, 2010, 35 (02) : 657 - 666
  • [36] Field Test and Numerical Simulation on Heat Transfer Performance of Coaxial Borehole Heat Exchanger
    Li, Peng
    Guan, Peng
    Zheng, Jun
    Dou, Bin
    Tian, Hong
    Duan, Xinsheng
    Liu, Hejuan
    ENERGIES, 2020, 13 (20)
  • [37] System performance of a deep borehole heat exchanger
    Kohl, T
    Brenni, R
    Eugster, W
    GEOTHERMICS, 2002, 31 (06) : 687 - 708
  • [38] Estimation of Ground Thermal Properties of Shallow Coaxial Borehole Heat Exchanger Using an Improved Parameter Estimation Method
    Wang, Changlong
    Fu, Qiang
    Fang, Han
    Lu, Jinli
    SUSTAINABILITY, 2022, 14 (12)
  • [39] Influences of stratified ground thermophysical properties on the performance and thermal response test of deep coaxial borehole heat exchanger
    Li, Zhihu
    Fu, Qiang
    Wang, Changlong
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2024, 21 (02) : 268 - 282
  • [40] Thermal response test use of a borehole heat exchanger
    Saljnikov, Aleksandar
    Goricanec, Darko
    Dobersek, Danijela
    Krope, Jurij
    Kozic, Dorde
    PROCEEDINGS OF THE 2ND IASME/WSEAS INTERNATIONAL CONFERENCE ON ENERGY & ENVIRONMENT, 2007, : 5 - +