Implications of single-stage deep learning networks in real-time zooplankton identification

被引:0
|
作者
Ansari, Sadaf [1 ]
Desai, Dattesh V. [2 ]
Saad, Aya [3 ]
Stahl, Annette [4 ]
机构
[1] CSIR Natl Inst Oceanog, Marine Instrumentat Div Comp Vis & AI, Panaji 403004, Goa, India
[2] CSIR Natl Inst Oceanog, Biol Oceanog Div, Panaji 403004, Goa, India
[3] SINTEF Ocean AS, Aquaculture Dept, Trondheim, Norway
[4] Norwegian Univ Sci & Technol NTNU, Dept Engn Cybernet, Trondheim, Norway
来源
CURRENT SCIENCE | 2023年 / 125卷 / 11期
关键词
Artificial intelligence; deep learning net; works; imaging; marine biology; zooplankton; SYSTEM;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Zooplankton are key ecological components of the marine food web. Currently, laboratory-based methods of zooplankton identification are manual, time-consuming, prone to human error and require expert taxonomists. Therefore, alternative methods are needed. In this study, we describe, implement and compare the performance of six state-of-the-art single-stage deep learning models for automated zooplankton identification. The highest prediction accuracy achieved is 99.50%. The fastest detection speed is 285 images per second, making the models suitable for real-time zooplankton classification. We validate the predictions of the generated models on unseen images. The results demonstrate the capabilities of the latest deep learning models in zooplankton identification.
引用
收藏
页码:1259 / 1266
页数:8
相关论文
共 50 条
  • [41] Real-time Object Detection and Semantic Segmentation Hardware System with Deep Learning Networks
    Fang, Shaoxia
    Tian, Lu
    Wang, Junbin
    Liang, Shuang
    Xie, Dongliang
    Chen, Zhongmin
    Sui, Lingzhi
    Yu, Qian
    Sun, Xiaoming
    Shan, Yi
    Wang, Yu
    2018 INTERNATIONAL CONFERENCE ON FIELD-PROGRAMMABLE TECHNOLOGY (FPT 2018), 2018, : 392 - 395
  • [42] Ransomware Defense Empowered: Deep Learning for Real-Time Family Identification with a Proprietary Dataset
    Hadi, Hassan Jalil
    Cao, Yue
    Ahmad, Naveed
    Alshara, Mohammed Ali
    2024 8TH INTERNATIONAL CONFERENCE ON CRYPTOGRAPHY, SECURITY AND PRIVACY, CSP 2024, 2024, : 77 - 83
  • [43] Deep Learning for Real-Time Energy-Efficient Power Control in Mobile Networks
    Matthiesen, Bho
    Zappone, Alessio
    Jorswieck, Eduard A.
    Debbah, Merouane
    2019 IEEE 20TH INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (SPAWC 2019), 2019,
  • [44] Real-Time Collaborative Intrusion Detection System in UAV Networks Using Deep Learning
    Hadi, Hassan Jalil
    Cao, Yue
    Li, Sifan
    Hu, Yulin
    Wang, Juan
    Wang, Shoufeng
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (20): : 33371 - 33391
  • [45] Deep Reinforcement Learning Model to Mitigate Congestion in Real-Time Traffic Light Networks
    Borges, Fabio de Souza Pereira
    Fonseca, Adelayda Pallavicini
    Garcia, Reinaldo Crispiniano
    INFRASTRUCTURES, 2021, 6 (10)
  • [46] Real-time on-board pedestrian detection using generic single-stage algorithms and on-road databases
    Ortiz Castello, Vicent
    del Tejo Catala, Omar
    Salvador Igual, Ismael
    Perez-Cortes, Juan-Carlos
    INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2020, 17 (05)
  • [47] RFSOD: a lightweight single-stage detector for real-time embedded applications to detect small-size objects
    A. N. Amudhan
    Shah Rutvik Vrajesh
    A. P. Sudheer
    A. Lijiya
    Journal of Real-Time Image Processing, 2022, 19 : 133 - 146
  • [48] RFSOD: a lightweight single-stage detector for real-time embedded applications to detect small-size objects
    Amudhan, A. N.
    Vrajesh, Shah Rutvik
    Sudheer, A. P.
    Lijiya, A.
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2022, 19 (01) : 133 - 146
  • [49] An end-to-end deep learning approach for real-time single image dehazing
    Chi Yoon Jeong
    KyeongDeok Moon
    Mooseop Kim
    Journal of Real-Time Image Processing, 2023, 20
  • [50] An end-to-end deep learning approach for real-time single image dehazing
    Jeong, Chi Yoon
    Moon, KyeongDeok
    Kim, Mooseop
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2023, 20 (01)