Implications of single-stage deep learning networks in real-time zooplankton identification

被引:0
|
作者
Ansari, Sadaf [1 ]
Desai, Dattesh V. [2 ]
Saad, Aya [3 ]
Stahl, Annette [4 ]
机构
[1] CSIR Natl Inst Oceanog, Marine Instrumentat Div Comp Vis & AI, Panaji 403004, Goa, India
[2] CSIR Natl Inst Oceanog, Biol Oceanog Div, Panaji 403004, Goa, India
[3] SINTEF Ocean AS, Aquaculture Dept, Trondheim, Norway
[4] Norwegian Univ Sci & Technol NTNU, Dept Engn Cybernet, Trondheim, Norway
来源
CURRENT SCIENCE | 2023年 / 125卷 / 11期
关键词
Artificial intelligence; deep learning net; works; imaging; marine biology; zooplankton; SYSTEM;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Zooplankton are key ecological components of the marine food web. Currently, laboratory-based methods of zooplankton identification are manual, time-consuming, prone to human error and require expert taxonomists. Therefore, alternative methods are needed. In this study, we describe, implement and compare the performance of six state-of-the-art single-stage deep learning models for automated zooplankton identification. The highest prediction accuracy achieved is 99.50%. The fastest detection speed is 285 images per second, making the models suitable for real-time zooplankton classification. We validate the predictions of the generated models on unseen images. The results demonstrate the capabilities of the latest deep learning models in zooplankton identification.
引用
收藏
页码:1259 / 1266
页数:8
相关论文
共 50 条
  • [31] Deep Learning for Real-time Applications: A Survey
    Zhang Z.-K.
    Pang W.-G.
    Xie W.-J.
    Lü M.-S.
    Wang Y.
    Zhang, Zheng-Kui (zhangzhengkui@cse.neu.edu.cn), 1600, Chinese Academy of Sciences (31): : 2654 - 2677
  • [32] Real-Time Detection of Crops with Dense Planting Using Deep Learning at Seedling Stage
    Kong, Shuolin
    Li, Jian
    Zhai, Yuting
    Gao, Zhiyuan
    Zhou, Yang
    Xu, Yanlei
    AGRONOMY-BASEL, 2023, 13 (06):
  • [33] Real-time learning capability of neural networks
    Huang, Guang-Bin
    Zhu, Qin-Yu
    Siew, Chee-Kheong
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2006, 17 (04): : 863 - 878
  • [34] Deep Learning-Based Real-Time Ureter Identification in Laparoscopic Colorectal Surgery
    Narihiro, Satoshi
    Kitaguchi, Daichi
    Hasegawa, Hiro
    Takeshita, Nobuyoshi
    Ito, Masaaki
    DISEASES OF THE COLON & RECTUM, 2024, 67 (10) : e1596 - e1599
  • [35] Real-time identification of plant diseases using aerial robots and deep learning techniques
    Maski, Prajwal
    Panigrahi, Siddhant
    Azad, Abhinav
    Thondiyath, Asokan
    2023 21ST INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS, ICAR, 2023, : 480 - 485
  • [36] Deep learning assisted logic gates for real-time identification of natural tetracycline antibiotics
    Tan, Ping
    Chen, Yuhui
    Chang, Hongrong
    Liu, Tao
    Wang, Jian
    Lu, Zhiwei
    Sun, Mengmeng
    Su, Gehong
    Wang, Yanying
    Wang, Huimin David
    Leung, Chunghang
    Rao, Hanbing
    Wu, Chun
    FOOD CHEMISTRY, 2024, 454
  • [37] Leveraging edge computing and deep learning for the real-time identification of bean plant pathologies
    Katumba, Andrew
    Okello, Wayne Steven
    Murindanyi, Sudi
    Nakatumba-Nabende, Joyce
    Bomera, Moses
    Mugalu, Ben Wycliff
    Acur, Amos
    SMART AGRICULTURAL TECHNOLOGY, 2024, 9
  • [38] Deep learning-based real-time VPN encrypted traffic identification methods
    Lulu Guo
    Qianqiong Wu
    Shengli Liu
    Ming Duan
    Huijie Li
    Jianwen Sun
    Journal of Real-Time Image Processing, 2020, 17 : 103 - 114
  • [39] Deep learning-based real-time VPN encrypted traffic identification methods
    Guo, Lulu
    Wu, Qianqiong
    Liu, Shengli
    Duan, Ming
    Li, Huijie
    Sun, Jianwen
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2020, 17 (01) : 103 - 114
  • [40] Building a Smarter Surveillance System: Real-Time Animal Identification using Deep Learning
    Labio, Jordan
    Dubey, Atul
    APPLICATIONS OF MACHINE LEARNING 2023, 2023, 12675