Implications of single-stage deep learning networks in real-time zooplankton identification

被引:0
|
作者
Ansari, Sadaf [1 ]
Desai, Dattesh V. [2 ]
Saad, Aya [3 ]
Stahl, Annette [4 ]
机构
[1] CSIR Natl Inst Oceanog, Marine Instrumentat Div Comp Vis & AI, Panaji 403004, Goa, India
[2] CSIR Natl Inst Oceanog, Biol Oceanog Div, Panaji 403004, Goa, India
[3] SINTEF Ocean AS, Aquaculture Dept, Trondheim, Norway
[4] Norwegian Univ Sci & Technol NTNU, Dept Engn Cybernet, Trondheim, Norway
来源
CURRENT SCIENCE | 2023年 / 125卷 / 11期
关键词
Artificial intelligence; deep learning net; works; imaging; marine biology; zooplankton; SYSTEM;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Zooplankton are key ecological components of the marine food web. Currently, laboratory-based methods of zooplankton identification are manual, time-consuming, prone to human error and require expert taxonomists. Therefore, alternative methods are needed. In this study, we describe, implement and compare the performance of six state-of-the-art single-stage deep learning models for automated zooplankton identification. The highest prediction accuracy achieved is 99.50%. The fastest detection speed is 285 images per second, making the models suitable for real-time zooplankton classification. We validate the predictions of the generated models on unseen images. The results demonstrate the capabilities of the latest deep learning models in zooplankton identification.
引用
收藏
页码:1259 / 1266
页数:8
相关论文
共 50 条
  • [1] Single-Stage Real-Time Face Mask Detection
    Linh Phung-Khanh
    Trawinski, Bogdan
    Vi Le-Thi-Tuong
    Anh Pham-Hoang-Nam
    Nga Ly-Tu
    INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2022, PT II, 2022, 13758 : 343 - 355
  • [2] A Single-Stage Deep Learning-based Approach for Real-Time License Plate Recognition in Smart Parking System
    Yu, Lina
    Liu, Shaokun
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (09) : 1142 - 1150
  • [3] Real-time construction demolition waste detection using state-of-the-art deep learning methods; single-stage vs two-stage detectors
    Demetriou, Demetris
    Mavromatidis, Pavlos
    Robert, Ponsian M.
    Papadopoulos, Harris
    Petrou, Michael F.
    Nicolaides, Demetris
    WASTE MANAGEMENT, 2023, 167 : 194 - 203
  • [4] Real-time reef fishes identification using deep learning
    Yusup, I. M.
    Iqbal, M.
    Jaya, I
    3RD INTERNATIONAL CONFERENCE ON MARINE SCIENCE (ICMS) 2019 - TOWARDS SUSTAINABLE MARINE RESOURCES AND ENVIRONMENT, 2020, 429
  • [5] Deep learning for real-time single-pixel video
    Higham, Catherine F.
    Murray-Smith, Roderick
    Padgett, Miles J.
    Edgar, Matthew P.
    SCIENTIFIC REPORTS, 2018, 8
  • [6] Deep learning for real-time single-pixel video
    Catherine F. Higham
    Roderick Murray-Smith
    Miles J. Padgett
    Matthew P. Edgar
    Scientific Reports, 8
  • [7] Recurrent Deep Neural Networks for Real-Time Sleep Stage Classification From Single Channel EEG
    Bresch, Erik
    Grossekathofer, Ulf
    Garcia-Molina, Gary
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2018, 12
  • [8] Real-Time Detection of Railway Track Component via One-Stage Deep Learning Networks
    Wang, Tiange
    Yang, Fangfang
    Tsui, Kwok-Leung
    SENSORS, 2020, 20 (15) : 1 - 15
  • [9] Leveraging Deep Learning for Real-Time Coffee Leaf Disease Identification
    Adelaja, Opeyemi
    Pranggono, Bernardi
    AGRIENGINEERING, 2025, 7 (01):
  • [10] Medicinal Plant Identification in Real-Time Using Deep Learning Model
    Kavitha S.
    Kumar T.S.
    Naresh E.
    Kalmani V.H.
    Bamane K.D.
    Pareek P.K.
    SN Computer Science, 5 (1)