Remaining Useful Life Prediction of Lithium-Ion Battery Based on Adaptive Fractional Lévy Stable Motion with Capacity Regeneration and Random Fluctuation Phenomenon

被引:4
|
作者
Song, Wanqing [1 ]
Chen, Jianxue [2 ]
Wang, Zhen [2 ]
Kudreyko, Aleksey [3 ]
Qi, Deyu [4 ]
Zio, Enrico [5 ]
机构
[1] Minnan Univ Sci & Technol, Sch Elect & Elect Engn, Quanzhou 362700, Peoples R China
[2] Shanghai Univ Engn Sci, Sch Elect & Elect Engn, Shanghai 201620, Peoples R China
[3] Bashkir State Med Univ, Dept Med Phys & Informat, Lenina 3, Ufa 450008, Russia
[4] Guangdong Univ Foreign Studies, Inst Digitizat Sci & Technol, South China Business Coll, Guangzhou 510545, Peoples R China
[5] Politecn Milan, Energy Dept, Via La Masa 34-3, I-20156 Milan, Italy
关键词
lithium-ion battery; remaining useful life; capacity regeneration phenomenon; adaptive fractional Levy stable motion; Monte Carlo simulation; DIAGNOSIS; NETWORK; MODEL;
D O I
10.3390/fractalfract7110827
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The capacity regeneration phenomenon is often overlooked in terms of prediction of the remaining useful life (RUL) of LIBs for acceptable fitting between real and predicted results. In this study, we suggest a novel method for quantitative estimation of the associated uncertainty with the RUL, which is based on adaptive fractional Levy stable motion (AfLSM) and integrated with the Mellin-Stieltjes transform and Monte Carlo simulation. The proposed degradation model exhibits flexibility for capturing long-range dependence, has a non-Gaussian distribution, and accurately describes heavy-tailed properties. Additionally, the nonlinear drift coefficients of the model can be adaptively updated on the basis of the degradation trajectory. The performance of the proposed RUL prediction model was verified by using the University of Maryland CALEC dataset. Our forecasting results demonstrate the high accuracy of the method and its superiority over other state-of-the-art methods.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Remaining Useful Life Prediction for Lithium-Ion Battery: A Deep Learning Approach
    Ren, Lei
    Zhao, Li
    Hong, Sheng
    Zhao, Shiqiang
    Wang, Hao
    Zhang, Lin
    IEEE ACCESS, 2018, 6 : 50587 - 50598
  • [22] Prediction of remaining useful life for lithium-ion battery with multiple health indicators
    Su, Chun
    Chen, Hongjing
    Wen, Zejun
    EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY, 2021, 23 (01): : 176 - 183
  • [23] A lithium-ion battery remaining useful life prediction method based on the incremental capacity analysis and Gaussian process regression
    Pang, Xiaoqiong
    Liu, Xiaoyan
    Jia, Jianfang
    Wen, Jie
    Shi, Yuanhao
    Zeng, Jianchao
    Zhao, Zhen
    MICROELECTRONICS RELIABILITY, 2021, 127
  • [24] Lithium-ion battery remaining useful life prediction based on grey support vector machines
    Li, Xiaogang
    Miao, Jieqiong
    Ye, Jianhua
    ADVANCES IN MECHANICAL ENGINEERING, 2015, 7 (12)
  • [25] Remaining useful cycle life prediction of lithium-ion battery based on TS fuzzy model
    Hou, Enguang
    Wang, Zhixue
    Qiao, Xin
    Liu, Guangmin
    FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [26] Remaining useful life prediction of lithium-ion battery based on an improved particle filter algorithm
    Xie, Guo
    Peng, Xi
    Li, Xin
    Hei, Xinhong
    Hu, Shaolin
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2020, 98 (06): : 1365 - 1376
  • [27] Remaining Useful Life Prediction of Aviation Lithium-ion Battery Based on SVR-MC
    Cui, Jianguo
    Zhao, Jie
    Cui, Xiao
    Liu, Dong
    Du, Wenyou
    Yu, Mingyue
    Jiang, Liying
    Wang, Jinglin
    2022 34TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2022, : 505 - 510
  • [28] Remaining Useful Life Prediction of Lithium-ion Battery based on Attention Mechanism with Positional Encoding
    Zhou, Beitong
    Cheng, Cheng
    Ma, Guijun
    Zhang, Yong
    2020 11TH INTERNATIONAL CONFERENCE ON MECHATRONICS AND MANUFACTURING (ICMM 2020), 2020, 895
  • [29] Lithium-ion battery remaining useful life prediction: a federated learning-based approach
    Zhong, Ruirui
    Hu, Bingtao
    Feng, Yixiong
    Lou, Shanhe
    Hong, Zhaoxi
    Wang, Fei
    Li, Guangshen
    Tan, Jianrong
    ENERGY ECOLOGY AND ENVIRONMENT, 2024, 9 (05) : 549 - 562
  • [30] Prediction of Remaining Useful Life of Lithium-ion Battery Based on Improved Auxiliary Particle Filter
    Li, Huan
    Liu, Zhitao
    Su, Hongye
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 1267 - 1272