Graphs with unique minimum edge-vertex dominating sets

被引:0
|
作者
Senthilkumar, B. [1 ]
Chellali, M. [1 ,2 ]
Kumar, H. Naresh [1 ]
Venkatakrishnan, Y. B. [1 ]
机构
[1] SASTRA Deemed Univ, Dept Math, Tanjore, Tamil Nadu, India
[2] Univ Blida, Dept Math, LAMDA RO Lab, BP 270, Blida, Algeria
关键词
Edge-vertex dominating set; edge-vertex domination number; trees; TREES; NUMBER;
D O I
10.22049/cco.2023.28605.1631
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An edge e of a simple graph G = (VG, EG) is said to ev-dominate a vertex v & ISIN; VG if e is incident with v or e is incident with a vertex adjacent to v. A subset D & SUBE; EG is an edge-vertex dominating set (or an evd-set for short) of G if every vertex of G is ev-dominated by an edge of D. The edge-vertex domination number of G is the minimum cardinality of an evd-set of G. In this paper, we initiate the study of the graphs with unique minimum evd-sets that we will call UEVD-graphs. We first present some basic properties of UEVD-graphs, and then we characterize UEVD-trees by equivalent conditions as well as by a constructive method.
引用
收藏
页码:99 / 109
页数:11
相关论文
共 50 条
  • [21] Efficient Dominating and Edge Dominating Sets for Graphs and Hypergraphs
    Brandstaedt, Andreas
    Leitert, Arne
    Rautenbach, Dieter
    ALGORITHMS AND COMPUTATION, ISAAC 2012, 2012, 7676 : 267 - 277
  • [22] Trees with Unique Minimum Semitotal Dominating Sets
    Haynes, Teresa W.
    Henning, Michael A.
    GRAPHS AND COMBINATORICS, 2020, 36 (03) : 689 - 702
  • [23] Maximum graphs with a unique minimum dominating set
    Fischermann, M
    Rautenbach, D
    Volkmann, L
    DISCRETE MATHEMATICS, 2003, 260 (1-3) : 197 - 203
  • [24] Trees with Unique Minimum Semitotal Dominating Sets
    Teresa W. Haynes
    Michael A. Henning
    Graphs and Combinatorics, 2020, 36 : 689 - 702
  • [25] UNIQUE MINIMUM SEMIPAIRED DOMINATING SETS IN TREES
    Haynes, Teresa W.
    Henning, Michael A.
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2023, 43 (01) : 35 - 53
  • [26] On Minimum Feedback Vertex Sets in Graphs
    Takaoka, Asahi
    Tayu, Satoshi
    Ueno, Shuichi
    2012 THIRD INTERNATIONAL CONFERENCE ON NETWORKING AND COMPUTING (ICNC 2012), 2012, : 429 - 434
  • [28] Reconfiguration of Minimum Independent Dominating Sets in Graphs
    Brewster, R.C.
    Mynhardt, C.M.
    Teshima, L.E.
    arXiv, 2023,
  • [29] Tropical dominating sets in vertex-coloured graphs
    d'Auriac, J. -A. Angles
    Bujtas, Cs.
    El Maftouhi, A.
    Karpinski, M.
    Manoussakis, Y.
    Montero, L.
    Narayanan, N.
    Rosaz, L.
    Thapper, J.
    Tuza, Zs.
    JOURNAL OF DISCRETE ALGORITHMS, 2018, 48 (27-41) : 27 - 41
  • [30] Reconfiguring Minimum Independent Dominating Sets in Graphs
    Brewster, R. C.
    Mynhardt, C. M.
    Teshima, L. E.
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2024, 9 (03) : 389 - 411