Edge-vertex domination in trees

被引:3
|
作者
Kim, Kijung [1 ]
机构
[1] Pusan Natl Univ, Dept Math, Busandaehak Ro 63beon Gil, Busan 46241, South Korea
基金
新加坡国家研究基金会;
关键词
Edge-vertex dominating set; tree; NUMBER;
D O I
10.1142/S1793830922500434
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G = (V,E) be a finite simple graph. A vertex v is an element of V is edge-vertex dominated by an edge e is an element of E if e is incident with v or e is incident with a vertex adjacent to v. An edge-vertex dominating set of G is a subset D subset of E such that every vertex of G is edge-vertex dominated by an edge of D. The edge-vertex domination number gamma ev(G) is the minimum cardinality of an edge-vertex dominating set of G. In this paper, we prove that n-l+2/4 <= gamma ev(T) <= n-1/2 for every tree T of order n >= 3 with l leaves, and we characterize the trees attaining each of the bounds.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] EDGE-VERTEX DOMINATION AND TOTAL EDGE DOMINATION IN TREES
    Kumar, H. Naresh
    Venkatakrishnan, Y. B.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2021, 11 : 172 - 177
  • [2] The edge-vertex domination and weighted edge-vertex domination problem
    Li, Peng
    Xue, Xinyi
    Zhou, Xingli
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2025, 49 (02)
  • [3] First Zagreb index and edge-vertex domination in trees
    Kumar, H. Naresh
    Senthilkumar, B.
    Balachandran, S.
    Venkatakrishnan, Y. B.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024,
  • [4] On trees with domination number equal to edge-vertex roman domination number
    Kumar, H. Naresh
    Venkatakrishnan, Y. B.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2021, 13 (04)
  • [5] Total edge-vertex domination
    Sahin, Abdulgani
    Sahin, Bunyamin
    RAIRO-THEORETICAL INFORMATICS AND APPLICATIONS, 2020, 54
  • [6] On trees with total domination number equal to edge-vertex domination number plus one
    Krishnakumari, B.
    Venkatakrishnan, Y.B.
    Krzywkowski, Marcin
    Proceedings of the Indian Academy of Sciences: Mathematical Sciences, 2016, 126 (02): : 153 - 157
  • [7] On trees with total domination number equal to edge-vertex domination number plus one
    B KRISHNAKUMARI
    Y B VENKATAKRISHNAN
    MARCIN KRZYWKOWSKI
    Proceedings - Mathematical Sciences, 2016, 126 : 153 - 157
  • [8] Edge-vertex domination on interval graphs
    Adhya, Amita Samanta
    Mondal, Sukumar
    Barman, Sambhu Charan
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024, 16 (02)
  • [9] On trees with total domination number equal to edge-vertex domination number plus one
    Krishnakumari, B.
    Venkatakrishnan, Y. B.
    Krzywkowski, Marcin
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2016, 126 (02): : 153 - 157
  • [10] On the computation of extremal trees of Harmonic index with given edge-vertex domination number
    Senthilkumar, B.
    Naresh Kumar, H.
    Venkatakrishnan, Y. B.
    Raja, S. P.
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2023, 21 (05)