Edge-vertex domination in trees

被引:3
|
作者
Kim, Kijung [1 ]
机构
[1] Pusan Natl Univ, Dept Math, Busandaehak Ro 63beon Gil, Busan 46241, South Korea
基金
新加坡国家研究基金会;
关键词
Edge-vertex dominating set; tree; NUMBER;
D O I
10.1142/S1793830922500434
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G = (V,E) be a finite simple graph. A vertex v is an element of V is edge-vertex dominated by an edge e is an element of E if e is incident with v or e is incident with a vertex adjacent to v. An edge-vertex dominating set of G is a subset D subset of E such that every vertex of G is edge-vertex dominated by an edge of D. The edge-vertex domination number gamma ev(G) is the minimum cardinality of an edge-vertex dominating set of G. In this paper, we prove that n-l+2/4 <= gamma ev(T) <= n-1/2 for every tree T of order n >= 3 with l leaves, and we characterize the trees attaining each of the bounds.
引用
收藏
页数:5
相关论文
共 50 条
  • [11] Complexity and Approximability of Edge-Vertex Domination in UDG
    Singireddy, Vishwanath Reddy
    Basappa, Manjanna
    arXiv, 2021,
  • [12] Improved Budgeted Connected Domination and Budgeted Edge-Vertex Domination
    Lamprou, Ioannis
    Sigalas, Ioannis
    Zissimopoulos, Vassilis
    THEORETICAL COMPUTER SCIENCE, 2021, 858 : 1 - 12
  • [14] Improved Budgeted Connected Domination and Budgeted Edge-Vertex Domination
    Lamprou, Ioannis
    Sigalas, Ioannis
    Zissimopoulos, Vassilis
    COMBINATORIAL ALGORITHMS, IWOCA 2020, 2020, 12126 : 368 - 381
  • [15] Further Results on Total Edge-Vertex Domination
    Sahin, Abdulgani
    JOURNAL OF MATHEMATICS, 2022, 2022
  • [16] DOUBLE EDGE-VERTEX DOMINATION IN GRAPHS: COMPLEXITY AND ALGORITHMS
    Venkatakrishnan, Y. B.
    Senthilkumar, B.
    Kumar, H. Naresh
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2023, 13 : 395 - 405
  • [17] Bounds on the double edge-vertex domination number of a tree
    Venkatakrishnan, Y. B.
    Kumar, H. Naresh
    Krishnakumari, B.
    ARS COMBINATORIA, 2019, 146 : 29 - 36
  • [18] An improved upper bound of edge-vertex domination number of a tree
    Venkatakrishnan, Y. B.
    Krishnakurnari, B.
    INFORMATION PROCESSING LETTERS, 2018, 134 : 14 - 17
  • [19] DOUBLE VERTEX-EDGE DOMINATION IN TREES
    Chen, Xue-Gang
    Sohn, Moo Young
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2022, 59 (01) : 167 - 177
  • [20] TOTAL VERTEX-EDGE DOMINATION IN TREES
    Ahangar, H. Abdollahzadeh
    Chellali, M.
    Sheikholeslami, S. M.
    Soroudi, M.
    Volkmann, L.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2021, 90 (02): : 127 - 143