APPLYING MULTIQUADRIC QUASI-INTERPOLATION TO SOLVE FOKKER-PLANCK EQUATION

被引:0
|
作者
Rahimi, M. [1 ]
Adibi, H. [1 ]
Amirfakhrian, M. [1 ,2 ]
机构
[1] Islamic Azad Univ, Cent Tehran Branch, Dept Math, Tehran, Iran
[2] Univ Calgary, Dept Comp Sci, Calgary, AB, Canada
关键词
Fokker-Planck equation; multiquadric quasi-interpolation; theta-weighted finite difference method; collocation method; meshless method; NUMERICAL-SOLUTION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Fokker-Planck equation (FPE) arises in various fields in physics, chemistry, natural science. It is difficult to obtain analytical solutions, accordingly we resort to numerical methods. In this study, we present a meshfree method to solve FPE. It is based on the multiquadric quasi-interpolation (MQQI) operator LW2 and collocation technique. Here, theta-weighted finite difference scheme is used to discretize the temporal derivative. Then, the unknown function and its spatial derivatives are approximated by the multiquadric quasi-interpolation (MQQI) operator LW2. Furthermore, the stability of the technique is investigated. This method is applied to some examples and the numerical results have been compared with the exact solutions and results of another method.
引用
收藏
页码:152 / 165
页数:14
相关论文
共 50 条
  • [31] EXTENSION OF FOKKER-PLANCK EQUATION
    PRICE, JC
    PHYSICS OF FLUIDS, 1966, 9 (12) : 2408 - &
  • [32] QUANTUM FOKKER-PLANCK EQUATION
    CHANG, LD
    WAXMAN, D
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1985, 18 (31): : 5873 - 5879
  • [33] PROPERTIES OF FOKKER-PLANCK EQUATION
    LIBOFF, RL
    FEDELE, JB
    PHYSICS OF FLUIDS, 1967, 10 (07) : 1391 - +
  • [34] PROPERTY OF FOKKER-PLANCK EQUATION
    COMBIS, P
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1978, 287 (06): : 473 - 476
  • [35] Quasicontinuum Fokker-Planck equation
    Alexander, Francis J.
    Rosenau, Philip
    PHYSICAL REVIEW E, 2010, 81 (04):
  • [36] Lattice Fokker-Planck equation
    Succi, S.
    Melchionna, S.
    Hansen, J. -P.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2006, 17 (04): : 459 - 470
  • [37] COVARIANCE OF THE FOKKER-PLANCK EQUATION
    GARRIDO, L
    PHYSICA A, 1980, 100 (01): : 140 - 152
  • [38] On Quantum Fokker-Planck Equation
    Yano, Ryosuke
    JOURNAL OF STATISTICAL PHYSICS, 2015, 158 (01) : 231 - 247
  • [39] Fractional Fokker-Planck Equation
    Baumann, Gerd
    Stenger, Frank
    MATHEMATICS, 2017, 5 (01):
  • [40] FRACTIONAL FOKKER-PLANCK EQUATION
    Tristani, Isabelle
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2015, 13 (05) : 1243 - 1260