APPLYING MULTIQUADRIC QUASI-INTERPOLATION TO SOLVE FOKKER-PLANCK EQUATION

被引:0
|
作者
Rahimi, M. [1 ]
Adibi, H. [1 ]
Amirfakhrian, M. [1 ,2 ]
机构
[1] Islamic Azad Univ, Cent Tehran Branch, Dept Math, Tehran, Iran
[2] Univ Calgary, Dept Comp Sci, Calgary, AB, Canada
关键词
Fokker-Planck equation; multiquadric quasi-interpolation; theta-weighted finite difference method; collocation method; meshless method; NUMERICAL-SOLUTION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Fokker-Planck equation (FPE) arises in various fields in physics, chemistry, natural science. It is difficult to obtain analytical solutions, accordingly we resort to numerical methods. In this study, we present a meshfree method to solve FPE. It is based on the multiquadric quasi-interpolation (MQQI) operator LW2 and collocation technique. Here, theta-weighted finite difference scheme is used to discretize the temporal derivative. Then, the unknown function and its spatial derivatives are approximated by the multiquadric quasi-interpolation (MQQI) operator LW2. Furthermore, the stability of the technique is investigated. This method is applied to some examples and the numerical results have been compared with the exact solutions and results of another method.
引用
收藏
页码:152 / 165
页数:14
相关论文
共 50 条
  • [21] PROPERTIES OF FOKKER-PLANCK EQUATION
    LEWIS, MB
    HOGAN, JT
    PHYSICS OF FLUIDS, 1968, 11 (04) : 761 - &
  • [22] Fractional Fokker-Planck equation
    El-Wakil, SA
    Zahran, MA
    CHAOS SOLITONS & FRACTALS, 2000, 11 (05) : 791 - 798
  • [23] The differential equation of Fokker-Planck
    Bernstein, S
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1933, 196 : 1062 - 1064
  • [24] Dynamics of the Fokker-Planck equation
    Jordan, R
    Kinderlehrer, D
    Otto, F
    PHASE TRANSITIONS, 1999, 69 (03) : 271 - 288
  • [25] Parametric Fokker-Planck Equation
    Li, Wuchen
    Liu, Shu
    Zha, Hongyuan
    Zhou, Haomin
    GEOMETRIC SCIENCE OF INFORMATION, 2019, 11712 : 715 - 724
  • [26] A SOLUTION OF A FOKKER-PLANCK EQUATION
    ENGLEFIELD, MJ
    PHYSICA A, 1990, 167 (03): : 877 - 886
  • [27] THE THERMALIZED FOKKER-PLANCK EQUATION
    FRISCH, HL
    NOWAKOWSKI, B
    JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (11): : 8963 - 8969
  • [28] How to solve Fokker-Planck equation treating mixed eigenvalue spectrum?
    Brics, M.
    Kaupuzs, J.
    Mahnke, R.
    CONDENSED MATTER PHYSICS, 2013, 16 (01)
  • [29] Computation of Fokker-Planck equation
    Yau, SST
    QUARTERLY OF APPLIED MATHEMATICS, 2004, 62 (04) : 643 - 650
  • [30] On Derivation of Fokker-Planck Equation
    Tanatarov, L. V.
    METALLOFIZIKA I NOVEISHIE TEKHNOLOGII, 2013, 35 (01): : 95 - 111