Highly Transparent, Scalable, and Stable Perovskite Solar Cells with Minimal Aesthetic Compromise

被引:34
|
作者
Liu, Tianran [1 ,2 ]
Zhao, Xiaoming [1 ]
Wang, Ping [2 ,3 ]
Burlingame, Quinn C. [3 ]
Hu, Junnan [2 ]
Roh, Kwangdong [2 ,4 ]
Xu, Zhaojian [2 ]
Rand, Barry P. [2 ,3 ]
Chen, Minjie [2 ,3 ]
Loo, Yueh-Lin [1 ]
机构
[1] Princeton Univ, Dept Chem & Biol Engn, Princeton, NJ 08544 USA
[2] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA
[3] Princeton Univ, Andlinger Ctr Energy & Environm, Princeton, NJ 08544 USA
[4] Ewha Womans Univ, Dept Phys, Seoul 03760, South Korea
基金
美国国家科学基金会;
关键词
color neutrality; inorganic perovskites; stability; thermal evaporation; transparent solar cells; HOLE-TRANSPORT MATERIAL; PARASITIC ABSORPTION; ENERGY PERFORMANCE; SMART WINDOWS; EFFICIENT; SEMITRANSPARENT; STABILITY; OXIDE; PHOTOVOLTAICS; TEMPERATURE;
D O I
10.1002/aenm.202200402
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Transparent photovoltaics (TPVs) can be integrated into the surfaces of buildings and vehicles to provide point-of-use power without impacting aesthetics. Unlike TPVs that target the photon-rich near-infrared portion of the solar spectrum, TPVs that harvest ultraviolet (UV) photons can have significantly higher transparency and color neutrality, offering a superior solution for low-power electronics with stringent aesthetic tolerance. In addition to being highly transparent and colorless, an ideal UV-absorbing TPV should also be operationally stable and scalable over large areas while still outputting sufficient power for its specified application. None of today's TPVs meet all these criteria simultaneously. Here, the first UV-absorbing TPV is demonstrated that satisfies all four criteria by using CsPbCl2.5Br0.5 as the absorber. By precisely tuning the halide ratio during thermal co-evaporation, high-quality large-area perovskite films can be accessed with an ideal absorption cutoff for aesthetic performance. The resulting TPVs exhibit a record average visible transmittance of 84.6% and a color rendering index of 96.5, while maintaining an output power density of 11 W m(-2) under one-sun illumination. Further, the large-area prototypes up to 25 cm(2) are demonstrated, that are operationally stable with extrapolated lifetimes of >20 yrs under outdoor conditions.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Interfacial modification towards highly efficient and stable perovskite solar cells
    Wang, Yang
    Zhang, Zemin
    Tao, Mingquan
    Lan, Yangjie
    Li, Mingzhu
    Tian, Yang
    Song, Yanlin
    NANOSCALE, 2020, 12 (36) : 18563 - 18575
  • [32] "Highly Efficient and Stable" Perovskite Solar Cells: Hype Versus Reality
    Kamat, Prashant V.
    ACS ENERGY LETTERS, 2025, 10 (02): : 896 - 897
  • [33] Defect Passivation of Perovskite Films for Highly Efficient and Stable Solar Cells
    Byranvand, Mahdi Malekshahi
    Saliba, Michael
    SOLAR RRL, 2021, 5 (08)
  • [34] Hydrophobic polymer interlayer for highly efficient and stable perovskite solar cells
    Yang, Qu
    Gong, Xiu
    Qi, Xiaosi
    Liu, Xuncheng
    Liu, Cheng
    Zhou, Quanfeng
    Sun, Qiang
    Shen, Yan
    Wang, Mingkui
    CHEMICAL ENGINEERING JOURNAL, 2023, 454
  • [35] Highly efficient and stable semi-transparent perovskite solar modules with a trilayer anode electrode
    Lee, Kun-Mu
    Chen, Kai-Shiang
    Wu, Jia-Ren
    Lin, Yan-Duo
    Yu, Sheng-Min
    Chang, Sheng Hsiung
    NANOSCALE, 2018, 10 (37) : 17699 - 17704
  • [36] Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene)
    Eui Hyuk Jung
    Nam Joong Jeon
    Eun Young Park
    Chan Su Moon
    Tae Joo Shin
    Tae-Youl Yang
    Jun Hong Noh
    Jangwon Seo
    Nature, 2019, 567 : 511 - 515
  • [37] Buried Interface Engineering Enables Efficient, Scalable, and Stable Inverted Perovskite Solar Cells
    Wang, Luqi
    Wang, Chao
    Li, Jing
    Geng, Cong
    Mo, Yanping
    Li, Hanxiao
    Bu, Tongle
    Tong, Jinhui
    Cheng, Yi-Bing
    Huang, Fuzhi
    SOLAR RRL, 2023, 7 (12)
  • [38] Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene)
    Jung, Eui Hyuk
    Jeon, Nam Joong
    Park, Eun Young
    Moon, Chan Su
    Shin, Tae Joo
    Yang, Tae-Youl
    Noh, Jun Hong
    Seo, Jangwon
    NATURE, 2019, 567 (7749) : 511 - +
  • [39] Transparent Liquid Crystal Hole-Transporting Material for Stable Perovskite Solar Cells
    Ul Ain, Qurat
    Xia, Jianxing
    Kanda, Hiroyuki
    Alwani, Imanah Rafieh
    Gao, Xiao-Xin
    Rehman, Habib Ur
    Shao, Guang
    Jankauskas, Vygintas
    Rakstys, Kasparas
    Khan, Ammar Ahmed
    Nazeeruddin, Mohammad Khaja
    SOLAR RRL, 2023, 7 (02)
  • [40] Highly Stable Perovskite Solar Cells by Reducing Residual Water-Induced Decomposition of Perovskite
    Yang, Xudong
    Ji, Wenxi
    Chen, Qiaoyun
    Su, Rui
    Zhang, Longgui
    Wang, Ailian
    Zhang, Taoyi
    Zhou, Yi
    Song, Bo
    CHINESE JOURNAL OF CHEMISTRY, 2023, 41 (13): : 1594 - 1602