Towards data-driven predictive control of active upper-body exoskeletons for load carrying

被引:0
|
作者
Souza, Alexandre Oliveira [1 ,2 ]
Grenier, Jordane [2 ]
Charpillet, Francois [1 ]
Maurice, Pauline [1 ]
Ivaldi, Serena [1 ]
机构
[1] Univ Lorraine, CNRS, INRIA, LORIA, F-54000 Nancy, France
[2] Safran Elect & Def, Valence, France
关键词
Exoskeleton; Predictive control; LSTM;
D O I
10.1109/ARSO56563.2023.10187548
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Upper-limb active exoskeletons are a promising technology to reduce musculoskeletal disorders in the context of load-carrying activities. To assist the user on time, it is crucial to predict the assistance torque required for the future intended movement. In this paper, we propose to predict such a torque with predictive models trained on simulated data. We generate exoskeleton sensor data for training learning-based prediction models from human motion capture data. We design a Quadratic Programming control problem for the exoskeleton to track the human body across its movements. From the data generated using this simulation method, we train two torque command prediction methods for transparent control and load carrying. We show that exoskeleton torque command can be predicted with a relative error below 5% at a horizon of 100ms.
引用
下载
收藏
页码:59 / 64
页数:6
相关论文
共 50 条
  • [21] Data-driven building energy modeling with feature selection and active learning for data predictive control
    Zhang, Liang
    Energy and Buildings, 2021, 252
  • [22] Identification for control approach to data-driven model predictive control
    Zakeri, Yadollah
    Sheikholeslam, Farid
    Haeri, Mohammad
    INTERNATIONAL JOURNAL OF AUTOMATION AND CONTROL, 2024, 18 (03) : 281 - 301
  • [23] DATA-DRIVEN INDIRECT ADAPTIVE MODEL PREDICTIVE CONTROL
    Wahab, Norhaliza
    Katebi, Mohamed Reza
    Rahmat, Mohd Fua'ad
    Bunyamin, Salinda
    JURNAL TEKNOLOGI, 2011, 54
  • [24] Data-driven Pattern Moving and Generalized Predictive Control
    Xu, Zhengguang
    Wu, Jinxia
    PROCEEDINGS 2012 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2012, : 1604 - 1609
  • [25] On Direct vs Indirect Data-Driven Predictive Control
    Krishnan, Vishaal
    Pasqualetti, Fabio
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 736 - 741
  • [26] Implicit Predictors in Regularized Data-Driven Predictive Control
    Klaedtke, Manuel
    Darup, Moritz
    IEEE CONTROL SYSTEMS LETTERS, 2023, 7 : 2479 - 2484
  • [27] Learning Based Stochastic Data-Driven Predictive Control
    Hiremath, Sandesh Athni
    Mishra, Vikas Kumar
    Bajcinca, Naim
    2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, : 1684 - 1691
  • [28] A Data-Driven Predictive Control Structure in the Behavioral Framework
    Wei, Lai
    Yan, Yitao
    Bao, Jie
    IFAC PAPERSONLINE, 2020, 53 (02): : 159 - 164
  • [29] Automatic Tuning for Data-driven Model Predictive Control
    Edwards, William
    Tang, Gao
    Mamakoukas, Giorgos
    Murphey, Todd
    Hauser, Kris
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 7379 - 7385
  • [30] Predictive Control of Autonomous Greenhouses: A Data-Driven Approach
    Kerkhof, L.
    Keviczky, T.
    2021 EUROPEAN CONTROL CONFERENCE (ECC), 2021, : 1229 - 1235