A Data-Driven Predictive Control Structure in the Behavioral Framework

被引:7
|
作者
Wei, Lai [1 ]
Yan, Yitao [1 ]
Bao, Jie [1 ]
机构
[1] Univ New South Wales, Sch Chem Engn, Sydney, NSW 2052, Australia
来源
IFAC PAPERSONLINE | 2020年 / 53卷 / 02期
基金
澳大利亚研究理事会;
关键词
data-driven predictive control; behavioral systems theory; dissipativity; DISSIPATIVE DYNAMICAL-SYSTEMS;
D O I
10.1016/j.ifaco1.2020.12.113
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a data-driven predictive control (DPC) algorithm for linear time-invariant (LTI) systems in the behavioral framework. The system is described by the parametrization of the Hankel matrix constructed from its measured trajectories. The proposed structure follows a two-step procedure. The existence of a controlled behavior is firstly verified from the perspective of dissipativity with the aid of quadratic difference forms (QdFs), then the controlled trajectory is selected from the original uncontrolled behavior through optimization. An illustrative example is presented to demonstrate the effectiveness of the proposed approach. Copyright (C) 2020 The Authors.
引用
收藏
页码:159 / 164
页数:6
相关论文
共 50 条
  • [1] Data-Driven Optimization Framework for Nonlinear Model Predictive Control
    Zhang, Shiliang
    Cao, Hui
    Zhang, Yanbin
    Jia, Lixin
    Ye, Zonglin
    Hei, Xiali
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2017, 2017
  • [2] Data-driven predictive control in a stochastic setting: a unified framework
    Breschi, Valentina
    Chiuso, Alessandro
    Formentin, Simone
    [J]. AUTOMATICA, 2023, 152
  • [3] Data-driven Route Guidance under the Framework of Model Predictive Control
    Zhou, Yonghua
    Yang, Xu
    Wang, Wei
    [J]. PROCEEDINGS 2010 3RD IEEE INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGY, (ICCSIT 2010), VOL 1, 2010, : 378 - 383
  • [4] Data-driven control: A behavioral approach
    Maupong, T. M.
    Rapisarda, P.
    [J]. SYSTEMS & CONTROL LETTERS, 2017, 101 : 37 - 43
  • [5] Learning Model Predictive Control for Iterative Tasks. A Data-Driven Control Framework
    Rosolia, Ugo
    Borrelli, Francesco
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2018, 63 (07) : 1883 - 1896
  • [6] Data-driven predictive control for networked control systems
    Xia, Yuanqing
    Xie, Wen
    Liu, Bo
    Wang, Xiaoyun
    [J]. INFORMATION SCIENCES, 2013, 235 : 45 - 54
  • [7] Behavioral uncertainty quantification for data-driven control
    Padoan, Alberto
    Coulson, Jeremy
    van Waarde, Henk J.
    Lygeros, John
    Dorfler, Florian
    [J]. 2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, : 4726 - 4731
  • [8] Data-driven predictive maintenance framework for railway systems
    Meira, Jorge
    Veloso, Bruno
    Bolon-Canedo, Veronica
    Marreiros, Goreti
    Alonso-Betanzos, Amparo
    Gama, Joao
    [J]. INTELLIGENT DATA ANALYSIS, 2023, 27 (04) : 1087 - 1102
  • [9] Data-Driven Predictive Control for Autonomous Systems
    Rosolia, Ugo
    Zhang, Xiaojing
    Borrelli, Francesco
    [J]. ANNUAL REVIEW OF CONTROL, ROBOTICS, AND AUTONOMOUS SYSTEMS, VOL 1, 2018, 1 : 259 - 286
  • [10] On the impact of regularization in data-driven predictive control
    Breschi, Valentina
    Chiuso, Alessandro
    Fabris, Marco
    Formentin, Simone
    [J]. 2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 3061 - 3066