Local minimizers for variational obstacle avoidance on Riemannian manifolds

被引:1
|
作者
Goodman, Jacob R. [1 ]
机构
[1] UAM, CSIC, UC3M, Inst Ciencias Matemat,UCM, Calle Nicolas Cabrera 13-15, Madrid 28049, Spain
来源
JOURNAL OF GEOMETRIC MECHANICS | 2023年 / 15卷 / 01期
关键词
bi-Jacobi fields; biconjugate points; local minimizers; Riemannian geometry; path planning; obstacle avoidance; SYSTEMS; SPLINES;
D O I
10.3934/jgm.2023003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies a variational obstacle avoidance problem on complete Riemannian manifolds. That is, we minimize an action functional, among a set of admissible curves, which depends on an artificial potential function used to avoid obstacles. In particular, we generalize the theory of bi-Jacobi fields and biconjugate points and present necessary and sufficient conditions for optimality. Local minimizers of the action functional are divided into two categories-called Q-local minimizers and Omega-local minimizers-and subsequently classified, with local uniqueness results obtained in both cases.
引用
收藏
页码:59 / 72
页数:14
相关论文
共 50 条
  • [1] Variational obstacle avoidance problem on Riemannian manifolds
    Bloch, Anthony
    Camarinha, Margarida
    Colombo, Leonardo
    2017 IEEE 56TH ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2017,
  • [2] Variational point-obstacle avoidance on Riemannian manifolds
    Bloch, Anthony
    Camarinha, Margarida
    Colombo, Leonardo
    MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2021, 33 (01) : 109 - 121
  • [3] Variational point-obstacle avoidance on Riemannian manifolds
    Anthony Bloch
    Margarida Camarinha
    Leonardo Colombo
    Mathematics of Control, Signals, and Systems, 2021, 33 : 109 - 121
  • [4] Variational collision and obstacle avoidance of multi-agent systems on Riemannian manifolds
    Chandrasekaran, Rama Seshan
    Colombo, Leonardo J.
    Camarinha, Margarida
    Banavar, Ravi
    Bloch, Anthony
    2020 EUROPEAN CONTROL CONFERENCE (ECC 2020), 2020, : 1689 - 1694
  • [5] Dynamic interpolation for obstacle avoidance on Riemannian manifolds
    Bloch, Anthony
    Camarinha, Margarida
    Colombo, Leonardo J.
    INTERNATIONAL JOURNAL OF CONTROL, 2021, 94 (03) : 588 - 600
  • [6] Variational collision avoidance problems on Riemannian manifolds
    Assif, Mishal
    Banavar, Ravi
    Bloch, Anthony
    Camarinha, Margarida
    Colombo, Leonardo
    2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, : 2791 - 2796
  • [7] Reduction by Symmetry in Obstacle Avoidance Problems on Riemannian Manifolds
    Goodman J.R.
    Colombo L.J.
    SIAM Journal on Applied Algebra and Geometry, 2024, 8 (01) : 26 - 53
  • [8] A Decentralized Strategy for Variational Collision Avoidance on Complete Riemannian Manifolds
    Colombo, Leonardo J.
    Goodman, Jacob R.
    CONTROLO 2020, 2021, 695 : 363 - 372
  • [9] Local minimizers of one-dimensional variational problems and obstacle problems
    Sychev, Mikhail A.
    COMPTES RENDUS MATHEMATIQUE, 2008, 346 (21-22) : 1213 - 1218
  • [10] VARIATIONAL INVARIANTS OF RIEMANNIAN-MANIFOLDS
    SIEGEL, J
    WILLIAMS, F
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 284 (02) : 689 - 705