HOMOGENIZATION OF TRAJECTORY STATISTICAL SOLUTIONS FOR THE 3D INCOMPRESSIBLE MAGNETO-MICROPOLAR FLUIDS

被引:3
|
作者
Yang, Hujun [1 ]
Han, Xiaoling [1 ]
Wang, Xuan [1 ]
Zhao, Caidi [2 ]
机构
[1] Northwest Normal Univ, Dept Math, Lanzhou 730070, Peoples R China
[2] Wenzhou Univ, Dept Math, Wenzhou 325035, Peoples R China
来源
关键词
Trajectory statistical solution; Magneto-micropolar fluids; trajectory attractor; homogenization; OSCILLATING EXTERNAL FORCE; REACTION-DIFFUSION SYSTEMS; NAVIER-STOKES SYSTEM; 2-PHASE FLOW MODEL; INVARIANT-MEASURES; PULLBACK ATTRACTORS; EQUATIONS; CONVERGENCE; REGULARITY; UNIQUENESS;
D O I
10.3934/dcdss.2022202
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article investigates the 3D incompressible magneto-micropolar fluids containing rapidly oscillating external force and angular momentum with respect to spatial variables. Under suitable assumptions on the oscillating external force and angular momentum, the existence of the trajectory attractor A(epsilon)(tr) and trajectory statistical solution mu(epsilon,w epsilon) is established, as well as the convergence of A(epsilon)(tr) to the trajectory attractor A(0)(tr) of the homogenized fluids. Then we prove the homogenization of trajectory statistical solution by establishing that mu(epsilon,w epsilon) converges to the trajectory statistical solution mu(0,w) of the homogenized fluids as epsilon -> 0(+). Our results reveal that the trajectory statistical information obtained from the 3D incompressible magneto-micropolar fluids with rapidly oscillating external force and angular momentum has certain homogenization effect with respect to spatial variables.
引用
收藏
页码:2672 / 2685
页数:14
相关论文
共 50 条
  • [41] Global existence and optimal convergence rates of solutions for 3D compressible magneto-micropolar fluid equations
    Wei, Ruiying
    Guo, Boling
    Li, Yin
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (05) : 2457 - 2480
  • [42] Global well-posedness to the 3D incompressible magneto-micropolar Benard system with damping and zero thermal conductivity
    Shou, Xiaohua
    Zhong, Xin
    APPLIED MATHEMATICS LETTERS, 2024, 151
  • [43] Global Regularity of 3D Nonhomogeneous Incompressible Micropolar Fluids
    Zhang, Peixin
    Zhu, Mingxuan
    ACTA APPLICANDAE MATHEMATICAE, 2019, 161 (01) : 13 - 34
  • [44] Global Regularity of 3D Nonhomogeneous Incompressible Micropolar Fluids
    Peixin Zhang
    Mingxuan Zhu
    Acta Applicandae Mathematicae, 2019, 161 : 13 - 34
  • [45] Two regularity criteria of the 3D magneto-micropolar equations in Vishik spaces
    Xu, Bo
    Zhou, Jiang
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2024, (52) : 1 - 10
  • [46] Remarks on the global smooth solution of the 3D generalized magneto-micropolar equations
    Wu, Jingbo
    Wang, Qingqing
    Zhang, Qiueyue
    Dong, Bo-Qing
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (06) : 4185 - 4198
  • [47] Global well-posedness of the 3D magneto-micropolar equations with damping
    Liu, Hui
    Sun, Chengfeng
    Meng, Fanwei
    APPLIED MATHEMATICS LETTERS, 2019, 94 (38-43) : 38 - 43
  • [48] Statistical solution and partial degenerate regularity for the 2D non-autonomous magneto-micropolar fluids
    Caidi Zhao
    Yanjiao Li
    Grzegorz Łukaszewicz
    Zeitschrift für angewandte Mathematik und Physik, 2020, 71
  • [49] Optimal decay rates for higher-order derivatives of solutions to the 3D magneto-micropolar fluid equations
    Qin, Liuna
    Zhang, Yinghui
    APPLIED MATHEMATICS LETTERS, 2022, 133
  • [50] Statistical solution and partial degenerate regularity for the 2D non-autonomous magneto-micropolar fluids
    Zhao, Caidi
    Li, Yanjiao
    Lukaszewicz, Grzegorz
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (04):