Global well-posedness to the 3D incompressible magneto-micropolar Benard system with damping and zero thermal conductivity

被引:2
|
作者
Shou, Xiaohua [1 ]
Zhong, Xin [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
基金
中国国家自然科学基金;
关键词
Incompressible magneto-micropolar Benard system; Global well-posedness; Damping; Zero thermal conductivity; NAVIER-STOKES EQUATIONS; UNIQUENESS; EXISTENCE;
D O I
10.1016/j.aml.2024.108995
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are concerned with the three-dimensional (3D) Cauchy problem of the incompressible magneto-micropolar Benard system with a nonlinear damping term alpha|u|(beta-1)u (alpha > 0 and beta >= 1) in the momentum equations. By energy method, we derive a unique global strong solution for such a model when beta >= 4. Our result extends previous related works.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Global well-posedness of the 3D magneto-micropolar equations with damping
    Liu, Hui
    Sun, Chengfeng
    Meng, Fanwei
    APPLIED MATHEMATICS LETTERS, 2019, 94 (38-43) : 38 - 43
  • [2] Global well-posedness for the 3D damped micropolar Benard system with zero thermal conductivity
    Li, Xinliang
    Tan, Zhong
    APPLIED MATHEMATICS LETTERS, 2021, 117
  • [3] Local well-posedness for the incompressible full magneto-micropolar system with vacuum
    Jishan Fan
    Zhaoyun Zhang
    Yong Zhou
    Zeitschrift für angewandte Mathematik und Physik, 2020, 71
  • [4] Global well-posedness for the 2D incompressible magneto-micropolar fluid system with partial viscosity
    Hongxia Lin
    Zhaoyin Xiang
    Science China Mathematics, 2020, 63 : 1285 - 1306
  • [5] Global well-posedness for the 2D incompressible magneto-micropolar fluid system with partial viscosity
    Lin, Hongxia
    Xiang, Zhaoyin
    SCIENCE CHINA-MATHEMATICS, 2020, 63 (07) : 1285 - 1306
  • [6] Global well-posedness for the 2D incompressible magneto-micropolar fluid system with partial viscosity
    Hongxia Lin
    Zhaoyin Xiang
    ScienceChina(Mathematics), 2020, 63 (07) : 1285 - 1306
  • [7] Local well-posedness for the incompressible full magneto-micropolar system with vacuum
    Fan, Jishan
    Zhang, Zhaoyun
    Zhou, Yong
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (02):
  • [8] Global well-posedness and large time behavior for the 3D magneto-micropolar equations
    Shang, Haifeng
    Liu, Chao
    APPLICABLE ANALYSIS, 2025, 104 (02) : 277 - 292
  • [9] Global well-posedness and large-time behavior of solutions to the 3D inviscid magneto-micropolar equations with damping
    Li, Xinliang
    Ding, Dandan
    APPLICABLE ANALYSIS, 2024, 103 (11) : 1963 - 1989
  • [10] Global well-posedness of 3D magneto-micropolar fluid equations with mixed partial viscosity
    Wang, Yinxia
    Wang, Keyan
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 33 : 348 - 362