Patient-specific neural networks for contour propagation in online adaptive radiotherapy

被引:8
|
作者
Smolders, A. [1 ,2 ]
Lomax, A. [1 ,2 ]
Weber, D. C. [1 ,3 ,4 ]
Albertini, F. [1 ]
机构
[1] Paul Scherrer Inst, Ctr Proton Therapy, Villigen, Switzerland
[2] Swiss Fed Inst Technol, Dept Phys, Zurich, Switzerland
[3] Univ Hosp Zurich, Dept Radiat Oncol, Zurich, Switzerland
[4] Univ Bern, Bern Univ Hosp, Inselspital, Dept Radiat Oncol, Bern, Switzerland
来源
PHYSICS IN MEDICINE AND BIOLOGY | 2023年 / 68卷 / 09期
关键词
contour propagation; adaptive radiotherapy; deep learning; biomedical image segmentation; DEFORMABLE IMAGE REGISTRATION; MODULATED PROTON THERAPY; AUTO-SEGMENTATION; TARGET VOLUMES; ORGANS; RISK; HEAD; DELINEATION; CT; UNCERTAINTIES;
D O I
10.1088/1361-6560/accaca
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective. fast and accurate contouring of daily 3D images is a prerequisite for online adaptive radiotherapy. Current automatic techniques rely either on contour propagation with registration or deep learning (DL) based segmentation with convolutional neural networks (CNNs). Registration lacks general knowledge about the appearance of organs and traditional methods are slow. CNNs lack patient-specific details and do not leverage the known contours on the planning computed tomography (CT). This works aims to incorporate patient-specific information into CNNs to improve their segmentation accuracy. Approach. patient-specific information is incorporated into CNNs by retraining them solely on the planning CT. The resulting patient-specific CNNs are compared to general CNNs and rigid and deformable registration for contouring of organs-at-risk and target volumes in the thorax and head-and-neck regions. Results. patient-specific fine-tuning of CNNs significantly improves contour accuracy compared to standard CNNs. The method further outperforms rigid registration and a commercial DL segmentation software and yields similar contour quality as deformable registration (DIR). It is additionally 7-10 times faster than DIR. Significance. patient-specific CNNs are a fast and accurate contouring technique, enhancing the benefits of adaptive radiotherapy.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Extracting Patient-Specific Radiobiological Parameters for Radiobiologically Adaptive Radiotherapy Based On Radiation Response for Lung Cancer
    Tai, A.
    Gore, E.
    Li, X.
    [J]. MEDICAL PHYSICS, 2012, 39 (06) : 4019 - 4019
  • [42] Patient-Specific Quality Assurance of Deformable Image Registrations Using Atlas for Adaptive Radiotherapy of Lung Cancer
    Alam, S. R.
    Meyer, S.
    Kuo, L.
    Hu, Y. C.
    Lu, W.
    Yorke, E. D.
    Rimner, A.
    Cervino, L. I.
    Zhang, P.
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2022, 114 (03): : E582 - E582
  • [43] Incorporating patient-specific information for the development of rectal tumor auto-segmentation models for online adaptive magnetic resonance Image-guided radiotherapy
    Kensen, Chavelli M.
    Simoes, Rita
    Betgen, Anja
    Wiersema, Lisa
    Lambregts, Doenja M. J.
    Peters, Femke P.
    Marijnen, Corrie A. M.
    van der Heide, Uulke A.
    Janssen, Tomas M.
    [J]. PHYSICS & IMAGING IN RADIATION ONCOLOGY, 2024, 32
  • [44] Adaptive grid generation in a patient-specific cerebral aneurysm
    Hodis, Simona
    Kallmes, David F.
    Dragomir-Daescu, Dan
    [J]. PHYSICAL REVIEW E, 2013, 88 (05):
  • [45] Future trends for patient-specific dosimetry methodology in molecular radiotherapy
    Gustafsson, Johan
    Taprogge, Jan
    [J]. PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2023, 115
  • [46] Patient-specific planning for prevention of mechanical collisions during radiotherapy
    Nioutsikou, E
    Bedford, JL
    Webb, S
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2003, 48 (22): : N313 - N321
  • [47] Clinical experience on patient-specific quality assurance for CBCT-based online adaptive treatment plan
    Shen, Chenyang
    Chen, Liyuan
    Zhong, Xinran
    Gonzalez, Yesenia
    Visak, Justin
    Meng, Boyu
    Inam, Enobong
    Parsons, David
    Godley, Andrew
    Jiang, Steve
    Cai, Bin
    Lin, Mu-Han
    [J]. JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2023, 24 (04):
  • [48] Patient-Specific Dosimetry Evaluations in Theranostics Software for Internal Radiotherapy
    Grassi, Elisa
    Finocchiaro, Domenico
    Fioroni, Federica
    Andl, George
    Filice, Angelina
    Versari, Annibale
    El Ouati, Ayman
    Spezi, Emiliano
    Iori, Mauro
    [J]. APPLIED SCIENCES-BASEL, 2024, 14 (16):
  • [49] Optimizing Radiotherapy for Glioblastoma Using A Patient-Specific Mathematical Model
    Corwin, D.
    Holdsworth, C.
    Rockne, R.
    Stewart, R.
    Phillips, M.
    Swanson, K.
    [J]. MEDICAL PHYSICS, 2013, 40 (06)
  • [50] Adaptive propagation deep graph neural networks
    Chen, Wei
    Yan, Wenxu
    Wang, Wenyuan
    [J]. PATTERN RECOGNITION, 2024, 154