Riemannian Low-Rank Model Compression for Federated Learning With Over-the-Air Aggregation

被引:1
|
作者
Xue, Ye [1 ]
Lau, Vincent [2 ]
机构
[1] Shenzhen Res Inst Big Data, Shenzhen 518172, Peoples R China
[2] Hong Kong Univ Sci & Technol, Dept Elect & Comp Engn, Hong Kong, Peoples R China
关键词
Federated learning; model compression; Riemannian optimization; IoT; OPTIMIZATION; CONVERGENCE; RETRACTIONS; ALGORITHMS;
D O I
10.1109/TSP.2023.3284381
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Low-rank model compression is a widely used technique for reducing the computational load when training machine learning models. However, existing methods often rely on relaxing the low-rank constraint of the model weights using a regularized nuclear norm penalty, which requires an appropriate hyperparameter that can be difficult to determine in practice. Furthermore, existing compression techniques are not directly applicable to efficient over-the-air (OTA) aggregation in federated learning (FL) systems for distributed Internet-of-Things (IoT) scenarios. In this article, we propose a novel manifold optimization formulation for low-rank model compression in FL that does not relax the low-rank constraint. Our optimization is conducted directly over the low-rank manifold, guaranteeing that the model is exactly low-rank. We also introduce a consensus penalty in the optimization formulation to support OTA aggregation. Based on our optimization formulation, we propose an alternating Riemannian optimization algorithm with a precoder that enables efficient OTA aggregation of low-rank local models without sacrificing training performance. Additionally, we provide convergence analysis in terms of key system parameters and conduct extensive experiments with real-world datasets to demonstrate the effectiveness of our proposed Riemannian low-rank model compression scheme compared to various state-of-the-art baselines.
引用
收藏
页码:2172 / 2187
页数:16
相关论文
共 50 条
  • [1] Coded Over-the-Air Computation for Model Aggregation in Federated Learning
    Zhang, Naifu
    Tao, Meixia
    Wang, Jia
    Shao, Shuo
    IEEE COMMUNICATIONS LETTERS, 2023, 27 (01) : 160 - 164
  • [2] Over-the-Air Federated Learning via Weighted Aggregation
    Azimi-Abarghouyi, Seyed Mohammad
    Tassiulas, Leandros
    IEEE Transactions on Wireless Communications, 2024, 23 (12) : 18240 - 18253
  • [3] Model Compression by Count Sketch for Over-the-Air Stateless Federated Learning
    Ahn, Jin-Hyun
    Kim, Ga-Yeon
    Kim, Dong Ho
    You, Cheolwoo
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (12): : 21689 - 21703
  • [4] Deep Compression for Efficient and Accelerated Over-the-Air Federated Learning
    Khan, Fazal Muhammad Ali
    Abou-Zeid, Hatem
    Hassan, Syed Ali
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (15): : 25802 - 25817
  • [5] Federated Learning With Over-the-Air Aggregation Over Time-Varying Channels
    Tegin, Busra
    Duman, Tolga M.
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2023, 22 (08) : 5671 - 5684
  • [6] Over-the-Air Aggregation for Federated Learning: Waveform Superposition and Prototype Validation
    Guo, Huayan
    Zhu, Yifan
    Ma, Haoyu
    Lau, Vincent K. N.
    Huang, Kaibin
    Li, Xiaofan
    Nong, Huabin
    Zhou, Mingyu
    Journal of Communications and Information Networks, 2021, 6 (04) : 429 - 442
  • [7] Beamforming and Device Selection Design in Federated Learning With Over-the-Air Aggregation
    Kalarde, Faeze Moradi
    Dong, Min
    Liang, Ben
    Ahmed, Yahia A. Eldemerdash
    Cheng, Ho Ting
    IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2024, 5 : 1710 - 1723
  • [8] IRS Assisted Federated Learning: A Broadband Over-the-Air Aggregation Approach
    Zhang, Deyou
    Xiao, Ming
    Pang, Zhibo
    Wang, Lihui
    Poor, H. Vincent
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (05) : 4069 - 4082
  • [9] UAV-Assisted Hierarchical Aggregation for Over-the-Air Federated Learning
    Zhong, Xiangyu
    Yuan, Xiaojun
    Yang, Huiyuan
    Zhong, Chenxi
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 807 - 812
  • [10] Power Minimization in Federated Learning with Over-the-air Aggregation and Receiver Beamforming
    Kalarde, Faeze Moradi
    Liang, Ben
    Dong, Min
    Ahmed, Yahia A. Eldemerdash
    Cheng, Ho Ting
    PROCEEDINGS OF THE INT'L ACM CONFERENCE ON MODELING, ANALYSIS AND SIMULATION OF WIRELESS AND MOBILE SYSTEMS, MSWIM 2023, 2023, : 259 - 267