Hypercyclic operators on Hilbert C*-modules

被引:0
|
作者
Ivkovic, Stefan [1 ]
机构
[1] Serbian Acad Arts & Sci, Math Inst, Pp 367,Kneza Mihaila 36, Beograd 11000, Serbia
关键词
standard Hilbert modules; generalized shifts; hypercyclic sequnces of operatrs; DISJOINTNESS; ALGEBRA;
D O I
10.2298/FIL2406901I
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we characterize hypercyclic generalized bilateral weighted shift operators on the standard Hilbert module over the C*-algebra of compact operators on the separable Hilbert space. Moreover, we give necessary and sufficient conditions for these operators to be chaotic and we provide concrete examples.
引用
收藏
页码:1901 / 1913
页数:13
相关论文
共 50 条
  • [41] Parallel sum of positive adjointable operators on Hilbert C*-modules
    Gordji, M. Eshaghi
    Fathi, H.
    Hosseinioun, S. A. R.
    AFRIKA MATEMATIKA, 2018, 29 (7-8) : 1081 - 1090
  • [42] Another characterization of Hilbert C*-modules over compact operators
    Arambasic, Ljiljana
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 344 (02) : 735 - 740
  • [43] Hypercyclic behaviour of operators in a hypercyclic C0-semigroup
    Conejero, Jose A.
    Muller, V.
    Peris, A.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 244 (01) : 342 - 348
  • [44] The Atkinson theorem in Hilbert C*-modules over C*-algebras of compact operators
    Niknam, A.
    Sharifi, K.
    ABSTRACT AND APPLIED ANALYSIS, 2007,
  • [45] THE POLAR DECOMPOSITION FOR ADJOINTABLE OPERATORS ON HILBERT C*-MODULES AND n-CENTERED OPERATORS
    Liu, Na
    Luo, Wei
    Xu, Qingxiang
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2019, 13 (03): : 627 - 646
  • [46] Hypercyclic operators are subspace hypercyclic
    Bamerni, Nareen
    Kadets, Vladimir
    Kilicman, Adem
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 435 (02) : 1812 - 1815
  • [47] Extensions of Hilbert modules and Hankel operators
    Guo, KY
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2000, 21 (01) : 17 - 24
  • [48] Extensions of Hilbert modules and Hankel operators
    Kunyu G.
    Chinese Annals of Mathematics, 2000, 21 (1) : 17 - 24
  • [49] Moore-Penrose inverses of Gram operators on Hilbert C*-modules
    Moslehian, M. S.
    Sharifi, K.
    Forough, M.
    Chakoshi, M.
    STUDIA MATHEMATICA, 2012, 210 (02) : 189 - 196
  • [50] Characterizations of Lie Triple Derivations on the Algebra of Operators in Hilbert C~*-Modules
    Guangyu AN
    Jun SHENG
    Jun HE
    JournalofMathematicalResearchwithApplications, 2024, 44 (03) : 387 - 396