THE POLAR DECOMPOSITION FOR ADJOINTABLE OPERATORS ON HILBERT C*-MODULES AND n-CENTERED OPERATORS

被引:5
|
作者
Liu, Na [1 ]
Luo, Wei [1 ]
Xu, Qingxiang [1 ]
机构
[1] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Hilbert C*-module; polar decomposition; centered operator; n-centered operator; binormal operator; MOORE-PENROSE INVERSE; LINEAR-OPERATORS;
D O I
10.1215/17358787-2018-0027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let n be any natural number. The n-centered operator is introduced for adjointable operators on Hilbert C*-modules. Based on the characterizations of the polar decomposition for the product of two adjointable operators, n-centered operators, centered operators as well as binormal operators are clarified, and some results known for the Hilbert space operators are improved. It is proved that for an adjointable operator T, if T is Moore-Penrose invertible and is n-centered, then its Moore-Penrose inverse is also n-centered. A Hilbert space operator T is constructed such that T is n-centered, whereas it fails to be (n + 1)-centered.
引用
收藏
页码:627 / 646
页数:20
相关论文
共 50 条
  • [1] THE POLAR DECOMPOSITION FOR ADJOINTABLE OPERATORS ON HILBERT C*-MODULES AND CENTERED OPERATORS
    Liu, Na
    Luo, Wei
    Xu, Qingxiang
    ADVANCES IN OPERATOR THEORY, 2018, 3 (04): : 855 - 867
  • [2] The generalized polar decomposition, the weak complementarity and the parallel sum for adjointable operators on Hilbert C∗-modules
    Zhang, Xiaofeng
    Tian, Xiaoyi
    Xu, Qingxiang
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2024, 18 (03)
  • [3] QUOTIENTS OF ADJOINTABLE OPERATORS ON HILBERT C*-MODULES
    Forough, Marzieh
    JOURNAL OF OPERATOR THEORY, 2015, 73 (02) : 425 - 432
  • [4] Some Inequalities for Adjointable Operators on Hilbert C∗-Modules
    Sababheh, Mohammad
    Moradi, Hamid Reza
    Xu, Qingxiang
    Zhao, Shuo
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2024, 18 (07)
  • [5] EP Matrices of Adjointable Operators on Hilbert C*-Modules
    Li, Xiaopeng
    Huang, Junjie
    Chen, Alatancang
    FILOMAT, 2021, 35 (10) : 3287 - 3292
  • [6] Generalized parallel sum of adjointable operators on Hilbert C*-modules
    Fu, Chunhong
    Moslehian, Mohammad Sal
    Xu, Qingxiang
    Zamani, Ali
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (12): : 2278 - 2296
  • [7] Parallel sum of positive adjointable operators on Hilbert C*-modules
    Gordji, M. Eshaghi
    Fathi, H.
    Hosseinioun, S. A. R.
    AFRIKA MATEMATIKA, 2018, 29 (7-8) : 1081 - 1090
  • [8] CONTINUITY OF THE POLAR DECOMPOSITION FOR UNBOUNDED OPERATORS ON HILBERT C*-MODULES
    Sharifi, Kamran
    GLASNIK MATEMATICKI, 2010, 45 (02) : 505 - 512
  • [9] Hypo-EP Matrices of Adjointable Operators on Hilbert C*-Modules
    Li, Xiaopeng
    Huang, Junjie
    Chen, Alatancang
    COMPLEXITY, 2021, 2021
  • [10] FACTORIZATION AND RANGE INCLUSION OF ADJOINTABLE OPERATORS ON THE WEIGHTED HILBERT C*-MODULES
    Fu, Chunhong
    Moslehian, Mohammad Sal
    Xu, Qingxiang
    Zamani, Ali
    OPERATORS AND MATRICES, 2020, 14 (04): : 959 - 969