INVESTIGATING THE IMPACT OF POINT CLOUD DENSITY ON SEMANTIC SEGMENTATION PERFORMANCE USING VIRTUAL LIDAR IN BOREAL FOREST

被引:1
|
作者
Stocker, Olivier [1 ]
Kouhi, Reza Mahmoudi [1 ]
Guilbert, Eric [1 ]
Ferraz, Antonio [2 ]
Badard, Thierry [1 ]
机构
[1] Univ Laval, Dept Sci Geomat, Quebec City, PQ, Canada
[2] CALTECH, Jet Prop Lab, Pasadena, CA USA
关键词
Boreal Forest; Simulation; LiDAR; Computer Vision; Deep Learning; AIRBORNE LIDAR;
D O I
10.1109/IGARSS52108.2023.10282100
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Virtual LiDAR Scan (VLS) serves as a powerful tool for the replication of real world conditions and can assist with the calibration of LiDAR systems. In this study, we utilize HELIOS++, a VLS software, to investigate the impact of point cloud density on the semantic segmentation performance of a well-established Deep Learning (DL) method for point clouds, KPConv. Our experiment is focused on a typical Quebec boreal forest composed of Abies balsamea and Picea mariana. We generated 10250 structurally diverse forest plots to train 10 DL models on a wide range point cloud densities to assess their effect on the semantic segmentation. Densities varied from 23 points/m(2) to 225 points/m(2), replicating point clouds output from classic airborne LiDAR scanning and high-density unmanned LiDAR scanning. Our results demonstrate that point cloud densification improves IoU score for both boreal tree species by an average of 0.3 percentage points per 10 points/m(2).
引用
收藏
页码:978 / 981
页数:4
相关论文
共 50 条
  • [41] TransUPR: A Transformer-based Plug-and-Play Uncertain Point Refiner For LiDAR Point Cloud Semantic Segmentation
    Yu, Zifan
    Chen, Meida
    Zhang, Zhikang
    You, Suya
    Rao, Raghuveer
    Agarwal, Sanjeev
    Ren, Fengbo
    2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2023, : 5864 - 5869
  • [42] Point Cloud Scene Semantic Segmentation Algorithm Based on Density Adaptive Deep Network
    Wei G.
    Zhao A.
    Wang Z.
    Tongji Daxue Xuebao/Journal of Tongji University, 2021, 49 (06): : 900 - 907
  • [43] Multispectral LiDAR Point Cloud Segmentation for Land Cover Leveraging Semantic Fusion in Deep Learning Network
    Xiao, Kai
    Qian, Jia
    Li, Teng
    Peng, Yuanxi
    REMOTE SENSING, 2023, 15 (01)
  • [44] Fast and Lite Point Cloud Semantic Segmentation for Autonomous Driving Utilizing LiDAR Synthetic Training Data
    Jeong, Jimin
    Song, Hamin
    Park, Jaehyun
    Resende, Paulo
    Bradai, Benazouz
    Jo, Kichun
    IEEE ACCESS, 2022, 10 : 78899 - 78909
  • [45] Semantic Segmentation Method of On-board Lidar Point Cloud Based on Sparse Convolutional Neural Network
    Xia X.
    Wang D.
    Cao J.
    Zhao G.
    Zhang J.
    Qiche Gongcheng/Automotive Engineering, 2022, 44 (01): : 26 - 35
  • [46] Semantic Segmentation and Construction of a DataSet From a 3D Point Cloud Obtained by LiDAR Sensor
    Mesa, Jhon Sebastian Aparicio
    Baron, Marco Javier Suarez
    Fernandez, Eduardo Avendano
    IEEE ACCESS, 2024, 12 : 108825 - 108834
  • [47] Towards a point cloud understanding framework for forest scene semantic segmentation across forest types and sensor platforms
    Lu, Hao
    Li, Bowen
    Yang, Gang
    Fan, Guangpeng
    Wang, Han
    Pang, Yong
    Wang, Zuyuan
    Lian, Yining
    Xu, Haifeng
    Huang, Huan
    REMOTE SENSING OF ENVIRONMENT, 2025, 318
  • [48] A Random Fusion of Mix3D and PolarMix to Improve Semantic Segmentation Performance in 3D Lidar Point Cloud
    Liu, Bo
    Feng, Li
    Chen, Yufeng
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2024, 140 (01): : 845 - 862
  • [49] Improved semantic segmentation network using normal vector guidance for LiDAR point clouds
    Kim, Minsung
    Oh, Inyoung
    Yun, Dongho
    Ko, Kwanghee
    JOURNAL OF COMPUTATIONAL DESIGN AND ENGINEERING, 2023, 10 (06) : 2332 - 2344
  • [50] Semantic Point Cloud Segmentation Using Fast Deep Neural Network and DCRF
    Rao, Yunbo
    Zhang, Menghan
    Cheng, Zhanglin
    Xue, Junmin
    Pu, Jiansu
    Wang, Zairong
    SENSORS, 2021, 21 (08)