INVESTIGATING THE IMPACT OF POINT CLOUD DENSITY ON SEMANTIC SEGMENTATION PERFORMANCE USING VIRTUAL LIDAR IN BOREAL FOREST

被引:1
|
作者
Stocker, Olivier [1 ]
Kouhi, Reza Mahmoudi [1 ]
Guilbert, Eric [1 ]
Ferraz, Antonio [2 ]
Badard, Thierry [1 ]
机构
[1] Univ Laval, Dept Sci Geomat, Quebec City, PQ, Canada
[2] CALTECH, Jet Prop Lab, Pasadena, CA USA
关键词
Boreal Forest; Simulation; LiDAR; Computer Vision; Deep Learning; AIRBORNE LIDAR;
D O I
10.1109/IGARSS52108.2023.10282100
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Virtual LiDAR Scan (VLS) serves as a powerful tool for the replication of real world conditions and can assist with the calibration of LiDAR systems. In this study, we utilize HELIOS++, a VLS software, to investigate the impact of point cloud density on the semantic segmentation performance of a well-established Deep Learning (DL) method for point clouds, KPConv. Our experiment is focused on a typical Quebec boreal forest composed of Abies balsamea and Picea mariana. We generated 10250 structurally diverse forest plots to train 10 DL models on a wide range point cloud densities to assess their effect on the semantic segmentation. Densities varied from 23 points/m(2) to 225 points/m(2), replicating point clouds output from classic airborne LiDAR scanning and high-density unmanned LiDAR scanning. Our results demonstrate that point cloud densification improves IoU score for both boreal tree species by an average of 0.3 percentage points per 10 points/m(2).
引用
收藏
页码:978 / 981
页数:4
相关论文
共 50 条
  • [21] Radial Transformer for Large-Scale Outdoor LiDAR Point Cloud Semantic Segmentation
    He, Xiang
    Li, Xu
    Ni, Peizhou
    Xu, Wang
    Xu, Qimin
    Liu, Xixiang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [22] Multilevel intuitive attention neural network for airborne LiDAR point cloud semantic segmentation
    Wang, Ziyang
    Chen, Hui
    Liu, Jing
    Qin, Jiarui
    Sheng, Yehua
    Yang, Lin
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2024, 132
  • [23] 1D Self-Attention Network for Point Cloud Semantic Segmentation Using Omnidirectional LiDAR
    Suzuki, Takahiro
    Hirakawa, Tsubasa
    Yamashita, Takayoshi
    Fujiyoshi, Hironobu
    PATTERN RECOGNITION, ACPR 2021, PT I, 2022, 13188 : 257 - 270
  • [24] SemanticVoxels: Sequential Fusion for 3D Pedestrian Detection using LiDAR Point Cloud and Semantic Segmentation
    Fei, Juncong
    Chen, Wenbo
    Heidenreich, Philipp
    Wirges, Sascha
    Stiller, Christoph
    2020 IEEE INTERNATIONAL CONFERENCE ON MULTISENSOR FUSION AND INTEGRATION FOR INTELLIGENT SYSTEMS (MFI), 2020, : 185 - 190
  • [25] Using a Waffle Iron for Automotive Point Cloud Semantic Segmentation
    Puy, Gilles
    Boulch, Alexandre
    Marlet, Renaud
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 3356 - 3366
  • [26] pCTFusion: Point Convolution-Transformer Fusion with Semantic Aware Loss for Outdoor LiDAR Point Cloud Segmentation
    Kuriyal A.
    Kumar V.
    Lohani B.
    SN Computer Science, 5 (3)
  • [27] DGPolarNet: Dynamic Graph Convolution Network for LiDAR Point Cloud Semantic Segmentation on Polar BEV
    Song, Wei
    Liu, Zhen
    Guo, Ying
    Sun, Su
    Zu, Guidong
    Li, Maozhen
    REMOTE SENSING, 2022, 14 (15)
  • [28] CNN semantic segmentation of airborne LiDAR point cloud considering long-tailed distribution
    Chen R.
    Wu J.
    Zhao X.
    Xu G.
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2023, 44 (07): : 282 - 295
  • [29] LiDAR Point Cloud Semantic Segmentation Method Based on Multi-scale Contextual Feature
    Liu, Fuchun
    Chen, Xujian
    Huang, Zewen
    Liu, Zeyong
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 477 - 482
  • [30] Multi-Modal LiDAR Point Cloud Semantic Segmentation with Salience Refinement and Boundary Perception
    Zhou, Yong
    Xie, Zeming
    Zhao, Jiaqi
    Du, Wenliang
    Yao, Rui
    El Saddik, Abdulmotaleb
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2024, 20 (10)